& frontiers | Frontiers in Nutrition

® Check for updates

OPEN ACCESS

EDITED BY
Ranjit Kumar Upadhyay,
Indian Institute of Technology Dhanbad, India

REVIEWED BY

Parimita Roy,

Thapar Institute of Engineering and
Technology (Deemed to be University), India
Chenyin Chu,

Monash University, Australia

*CORRESPONDENCE
Travis B. Thompson
travis.thompson@ttu.edu

fThese authors share senior authorship

RECEIVED 26 July 2025
REVISED 23 October 2025
ACCEPTED 27 November 2025
PUBLISHED 12 January 2026

CITATION

Thompson TB, Shin AC, Decourt B, Wang Y,
Vigil BZ, Solodukhina A, Ranasinghe S,
Young RS, Hegde V and Moustaid-Moussa N
(2026) Linking dietary patterns to Alzheimer's
disease biomarkers with network
mathematical modeling could enable new
approach methodologies in preventative AD
research: a narrative interdisciplinary review.
Front. Nutr. 12:1673533.

doi: 10.3389/fnut.2025.1673533

COPYRIGHT

© 2026 Thompson, Shin, Decourt, Wang,
Vigil, Solodukhina, Ranasinghe, Young, Hegde
and Moustaid-Moussa. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiersin Nutrition

TYPE Review
PUBLISHED 12 January 2026
pol 10.3389/fnut.2025.1673533

Linking dietary patterns to
Alzheimer’s disease biomarkers
with network mathematical
modeling could enable new
approach methodologies in
preventative AD research: a
narrative interdisciplinary review

Travis B. Thompson2345* Andrew C. Shinl*4>¢,

Boris Decourt?7, Yifan Wang?, Bradley Z. Vigil?,

Anna Solodukhina?, Shakkya Ranasinghe?, Robert S. Young?,
Vijay Hegde!® and Naima Moustaid-Moussa®#21°t

Ynstitute for One Health Innovation, Texas Tech University System, Lubbock, TX, United States,
2Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, United States, *Center
of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences
Center, Lubbock, TX, United States, *Center of Excellence in Obesity and Cardiometabolic Research,
Texas Tech University and Texas Tech Health Sciences Center, Lubbock, TX, United States, *Human
Molecular Aging Center, Texas Tech University, Lubbock, TX, United States, °Neurobiology of Nutrition
Laboratory, Department of Nutritional Sciences, College of Health and Human Sciences, Texas Tech
University, Lubbock, TX, United States, ’Department of Pharmacology and Neuroscience, Texas Tech
University Health Sciences Center, Lubbock, TX, United States, 8 Department of Nutritional Sciences,
Texas Tech University, Lubbock, TX, United States, °Department of Cell Biology and Biochemistry,
School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States,
°School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States

Alzheimer's disease (AD) is a significant global health concern. With no reliable
pharmaceutical treatments on the horizon, the best path forward is preventative.
Dietary patterns are related to one third of AD risk factors and have long
been thought to influence the onset or the progression of AD. Studies of the
preventative possibilities of diet on AD offer the prospect of helping to suppress
AD prevalence until effective pharmaceutical interventions are discovered but
can be challenging due to variations, duration, cost or ethical considerations
presented by human and animal studies. At the same time, the National Institutes
of Health and the Food and Drug Administration are encouraging new approach
methodologies (NAMs), including mathematical and computational models, to
help study human diseases like AD (AD-NAMs). This narrative review is an
approachable starting point for interdisciplinary teams of nutritional scientists,
neuroscientists, mathematicians and computer scientists with an interest in
developing mathematical or simulation-based AD-NAMs that aim to link diet to
AD biomarker pathology. We introduce the interdisciplinary reader to the three
essential areas, including their historical context and contemporary advances,
required to chart the further development of simulation-based AD-NAMs: the
fundamentals and contextual significance of AD protein biomarker pathology;
the history and evidence for dietary influence on that pathology; and an
introduction to network mathematical models to mathematically analyze and
computationally simulate the progression of that pathology. Afterwards, we offer
views on bridging the gap between the contemporary approach and those
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that may be used to mathematically and computationally investigate: potential
mechanistic links between dietary patterns and AD biomarker pathology; and the
potential of dietary patterns to help suppress AD prevalence, at least until reliable
pharmaceutical options can be developed

KEYWORDS

Alzheimer's

1 Introduction

It is well known that Alzheimer’s disease (AD), the most
common cause of dementia, is a major global health challenge
whose severity is only expected to increase (1); currently, around
50 million people have dementia, a number that will nearly
triple over the next two decades (2, 3). The AD challenge is
coupled with an expected shortfall of 86,000 trained physicians
by 2036 (4). There is no estimate for when, or even if, reliable
pharmaceutical treatments halting or reversing AD progression
may arise, positioning modifiable risk factors as a potential way to
reduce AD prevalence until reliable treatments can be developed.
Modifiable risk factors for AD are non-genetic, mutable attributes
or actions associated with an increased risk of developing AD. As
of 2024, 14 such risk factors, accounting for up to 45% of dementia
risk, have been identified (3), a third of these risk factors are directly
or indirectly related to daily dietary choices.

Given that diet relates to a third of modifiable risk factors
(3), one could conjecture that dietary intervention may slow AD
onset, progression or both. This conjecture leads to open questions:
what biological mechanisms may best link dietary patterns to AD
progression; and is AD onset or progression predictable from
dietary patterns? These are challenging investigatory questions
for which traditional investigatory means may prove incredibly
costly in human time, financial cost and animal life. It may prove
valuable if there were some quantifiable means to narrow the field
of possibilities before investing significantly in experimental costs.
The World Health Organization pointed out the pressing need for
developing innovative health technologies for AD research a decade
ago (5). Today, the National Institutes of Health and the Food and
Drug Administration are echoing this call by asking researchers to
develop human-relevant new approach methodologies (NAMs) (6—
8) to improve predictive accuracy, reduce research costs, reduce a
reliance on animal testing and expand the set of research tools for
difficult biological and medical questions.

The nutritional sciences have a history of using mathematical
models to explore potential research paths in otherwise complex
landscapes. For example, energy balance models (9) have been
used to test mechanistic hypotheses and to predict outcomes
regarding relationships between dietary constituents and body
weight or body composition. If important AD pathology could
be encoded mathematically, those models could be extended to
include potential mechanisms linking dietary patterns and AD.
Simulation-based NAMs exploring what mechanisms may best
explain observational data, and to what extent dietary patterns may
ultimately predict or influence AD, then become possible. In fact, a
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new class of computationally-efficient mathematical model, sharing
similarities with energy balance models, can already represent some
of the key mechanisms governing the evolution of important AD
biomarkers. These models may be a good foundation for a new class
of AD-NAMs to research potential links between dietary patterns
and AD biomarkers using mathematics and computation.

Developing mathematical and computational AD-NAMs to
study how dietary patterns may hasten or delay AD will
face some significant challenges. First and foremost, this goal
intersects nutritional science, neuroscience, computer science
and mathematics, making it highly interdisciplinary. Second, the
AD literature, including the view on diet, is voluminous and
knowing where to start can be daunting. Third, the nutritional
literature is similarly vast with research studies considering a full
spectrum of dietary patterns, from broad intake to very specific
micronutrients, to study mixtures of both clinical and biomarker-
related AD pathology, making it difficult to narrow down and
find potential evidence for comprehensive patterns. Finally, it
can prove difficult to interpret the current mathematics that
describe AD biomarkers, leading to trouble solving these equations
computationally or extending them to include new mechanisms.
The novelty of this narrative review is that it threads together
important historical and contemporary results, at the intersections
of AD biomarkers, dietary patterns and network mathematical
models, to provide an accessible starting point for charting the
interdisciplinary development of simulation-based AD-NAMs to
investigating how dietary patterns may help to delay AD. Toward
this end, we introduce the historical context, essential views and
primary findings in three areas: the minimal essentials of amyloid-
beta (AB) and tau protein (tP) pathology in AD (Section 2); the
evidence that dietary patterns do indeed relate to this pathology
(Section 3); and a specific class of mathematical methods that
have recently been introduced to model this pathology (Section 4).
We conclude (Section 5) by highlighting steps and challenges to
bridge the gap between the current simulation-based AD-NAMs
and those that may be used to study how dietary patterns may help
to suppress AD prevalence until reliable pharmaceutical options
become available.

2 A brief primer on some essential AD
biomarkers

This section introduces nutritional scientists, computer
scientists and mathematicians to a minimal set of essentials for

understanding AB and tP pathology in AD; it may also be useful
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for neuroscience research students who are not yet familiar with
AD. The focus is on those essentials that will facilitate research
into novel, computational AD-NAMs aimed at researching the
potential links, both mechanistic and predictive, between dietary
patterns and AD biomarkers using mathematics and computation.
This section does not present an exhaustive review of A and tP in
AD; rather, it provides the required context for the discussion on
dietary patterns (Section 3) and network mathematical models of
AD (Section 4) while citing several important publications that the
reader may find useful for their own research in simulation-based
AD-NAMs. The contents of this section are: a short history of AS
and tP biomarkers in AD and how they came to be related with
clinical presentation (Section 2.1); the contemporary framework
for classifying AD based on Af and 7P biomarkers (Section 2.2);
and a short overview of some of the key mechanisms governing AS
and TP biomarker evolution in AD (Section 2.3).

2.1 An abridged history of two primary AD
biomarkers and clinical AD presentation

AD was famously described by Alois Alzheimer in 1907 when
he reported the analysis of Frau Auguste Deter; Frau Deter was a
patient at the asylum in Frankfurt Germany whom Dr. Alzheimer
had met, through his long professional collaboration with asylum
director Emil Sioli, in 1901 (10). Frau Deter’s case wonderfully
displayed the duality of AD: the clinical presentation of senile
dementia; and the striking protein pathology of tP neurofibrillary
tangles (NFTs) and Ap plaques discovered in her postmortem
analysis (11). This dual nature threads its way through our thinking
about the disease more than a century later: does one have AD
when they show certain signs of clinical dementia or do they have
AD when they exhibit sufficient proteinopathy? Sixty years after
Alzheimer, Sir Martin Roth quantitatively studied the question
by considering the statistical relationship between senile plaques
(extracellular AB aggregates) and cognitive test performance (12,
13). Around that same time, Roth was collaborating with the
neuropathologist Sir Bernard Tomlinson to consider an accounting
of P NFT in the brains of patients with and without dementia
(14). This collaboration, and a rigorous pursuant study by Gordon
Wilcock and Margaret Esiri in the 1980s, demonstrated that
7P NFT were highly correlated with dementia while A plaque
correlation was weaker (15).

Early statistical studies correlating Ap and tP with clinical
symptoms may have strongly influenced the view of AD as a
combined clinical-pathologic entity (16, 17). The official diagnostic
criteria for AD originated 1984 and cited the early work of Roth
(18). A diagnosis of AD is based primarily on cognitive, behavioral
and functional impairment measured by a combination of noted
shifts in lifelong patterns of memory and executive function, or
performance on neuropsychological exams relative to expected
outcomes. Once preliminary criteria are met, probable AD is
diagnosed based on genetic evidence or on the decline in memory
and learning and whether cognitive decline is steady. If the bar
for probable AD is not met, then possible AD is the diagnosis
(19); an AD diagnosis is confirmed by post mortem autopsy.
These criteria were designed based on the prevailing view that
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AD neuropathology, like AB and TP aggregates, were in tight,
virtually synonymous correspondence with clinical symptoms;
patients without AD dementia were anticipated to be free of AD
pathology while patients who had AD dementia were thought to
also have developed AD pathology (16).

The assumption of tight, or synonymous, correspondence
between clinical symptoms and AD neuropathology is not sound.
It is now well known that diffuse AS plaques occur in cognitively
asymptomatic patients in an extended preclinical phase (17, 20).
About 30 years after the NINCDS-ADRDA criteria, the role of
AD protein pathology in slowly advancing the disease from a pre-
clinical to a clinical stage was receiving attention (16); as any AD
intervention would need to identify biologically defined targets, the
push to see AD in terms of biomarkers and to classify clinical stage
separately was already underway (17).

2.2 The A/T/N framework for AD diagnosis
and staging

The “amyloid cascade hypothesis” of AD (21-23) famously
postulated that “the deposition of A protein is the causative agent of
Alzheimer’s pathology and that NFT, cell loss, vascular damage and
dementia follow as a direct result of this deposition.” Whether Af
or TP misfolding and aggregation are the etiological factors of AD
is now debated; what is not debated is that AS and P pathology
are central biomarkers of AD and AD progression. The A/T/N
framework advances a view of AD based on the primary biomarkers
of AB and 7P pathology; the framework describes diagnostic
criteria in addition to criteria for disease staging with a separate
classification that tracks clinical progression. The A/T/N criteria
are the culmination of over a decade of analysis, consideration
and planning (16, 17, 24, 25) and offer an invaluable tool for
AD research.

The A/T/N emphasizes measurable AD biomarkers. AD
biomarkers are separated into 4 categories: category “A” is related
to Ap pathology; category “T” is related to TP pathology; category
“N” is related to pathology related to neurodegeneration; the final
category does not have a letter label, but includes non-specific
processes, like neuroinflammation, and biomarkers of non-AD
copathology like vascular brain injury and levels of «-synuclein.
The A and T categories make up the so-called core biomarkers
and are the most important for AD diagnosis and staging. Core
biomarkers are further categorized as either core I or core 2
with core 1 establishing the foundation for diagnosis and core 2
establishing additional means to assess progression. Biomarkers
in the “N” category, or the unlabeled category, are reportedly
inconsistent across patients but do provide prognostic value; thus,
they add context to the core assessments (25). Most importantly,
the A/T/N diagnosis of AD requires abnormal Af, established
through either positron emission tomography (PET) imaging or
through abnormal levels of TP and AB detected in a cerebrospinal
fluid (CSF) sample [(25), Table 2]; both of these measures are mildly
invasive but the technology to detect AS and tP in plasma with very
high accuracy is making its way to points of care.

The A/T/N establishes both AD biomarker and clinical staging.
The original 1984 view of the NINCDS-ADRDA criteria, that
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FIGURE 1
Core 1 biomarkers are defined by AB (red spheres) and tP (green spheres), from plasma, CSF and imaging. Core 1 biomarkers are central to AD
diagnosis in the A/T/N framework and consist of: tau phosphorylated at site 217 (ptau217) in plasma (bottom left); the 40 and 42 amino acid AB
peptides (AB40, AB42), tau phosphorylated at site 181 (p-taul81) and total tau (t-tau) content in CSF (bottom middle); and brain A8 aggregate levels
measured by AB PET imaging (bottom right) [(25), Tables 1, 2].

clinical dementia is synonymous with biomarker pathology, is no
longer accepted. In particular, abnormal Af pathology can exist
in clinically asymptomatic cases; conversely, coexisting conditions
can shift clinical symptoms earlier or later in the disease process
whereas A and T biomarkers display prototypical trends [(25),
Figure 1]. Core 1 biomarkers (Figure 1), i.e., plasma and CSF levels
of particular Af and 7P analytes or AS PET, currently provide
the earliest means of AD detection [(25), Table 1]. After AD is
detected, core 1 and core 2 biomarkers, together, give an idea of
what stage the patient is in based on their level of TP pathology
via imaging or fluid analytes [(25), Tables 3-5]. Finally, the A/T/N
also proposes seven different clinical stages which, when coupled to
biomarker staging, yields a total of 17 possible AD states and a step-
wise trajectory expected to apply to most patients [(25), Tables 6, 7].
In summary, the A/T/N disentangles the clinical AD perspective,
fraught with comorbidities and patient-specific variation, from the
underlying measurable neuropathology of AD biomarker status. In
doing so, it defines actionable intervention targets for AD, a clear
AD diagnostic criteria and comprehensive staging categorization.
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2.3 A brief overview of A and =P
proteinopathy in AD

The core 1 and core 2 biomarkers of the A/T/N framework
are all measures of AB and P pathology. At a high level, the A
and P proteinopathy in AD can be conceptualized as governed
by a tripartite paradigm: the production of AB and tP species
that can aggregate; brain clearance mechanisms that manage AS
and tP levels; and the prion-like reproduction and spreading of
aggregated pathology.

2.3.1 The production of aggregation-competent
AB and P

In 1987 it was discovered that AB is derived from APP,
transmembrane

an evolutionarily conserved protein  with

physiological purposes including cell growth, maturation,
proliferation, survival and repair, among others (26, 27). AS

pathology ultimately arises from APP processing by secretases.
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APP processing has been covered at great length (26-37). Briefly,
different secretase types cleave APP protein in different places; the
sequential ordering in which secretase types cleave APP is called
an APP processing pathway. The “amyloidogenic pathway,” S
secretase followed by y secretase, produces AB peptides that can
aggregate together to form the infamous plaques associated with
AD dementia; the “non-amyloidogenic” pathway, « followed by y
secretase, does not produce the aggregation-prone A peptide. The
two most common amyloidogenic forms of AS are A4y and ApB4,.
A4 accounts for around 20% of the overall AB production, is
more prone to aggregation and its aggregates are more neurotoxic
(28).

The NFTs first noticed by Alzheimer (11) were aggregates
of the 7P protein. tP, like AB, is a critical brain protein that
helps give structure to cells, has been implicated in the brain’s
response to insulin, cell-cycle maintenance, neurogenesis and
synaptic function among others (38). Unlike AB, tP is not a
downstream cleavage product of another protein. tP arises from
the alternative splicing of the MAPT gene, creating up to six
different (mRNA) blueprints used to build the final TP protein. TP
plays an important role in regulating microtubules in cells (38-40)
and is constantly being modified in order to carry out this function.
Some modifications, when they occur in the right order, promote
7P to detach from microtubules and aggregate, eventually forming
the NFT hallmarks of AD (41-44). A recent post-mortem analysis
of 19 patients suggested a staging of 7P PTM relevant to AD: (A)
initial phosphorylation; (B) enhanced phosphorylation; (C) initial
acetylation and ubiquitination; and (D) enhanced acetylation and
ubiquitination [(44), Figure 5]. As TP moves down this chain of
modifications, it becomes more likely to aggregate and form fibrils
and NFT.

Plaques of AB and NFTs of 7P are the canonical hallmarks of
AD protein pathology. Broadly speaking, aggregation-capable AfS
or TP monomers can form oligomers (45-47); oligomers consist of
a small number of monomers and are named according to their
monomer count, such as a dimer (2 monomers) or a trimer (3
monomers), etc. Some oligomers can spur further aggregation to
protofibrils which, in turn, can form fibrils that aggregate to form
the plaques and NFTs of AD (47). Growing evidence supports the
hypothesis that oligomers and protofibrils are the most cytotoxic
aggregated AB or TP species, that A plaques and P NFT are
likely nontoxic, while monomers and fibrils are only mildly toxic
or non-toxic (48-52). Some studies suggest that oligomeric Ap
may have a hormetic effect, being beneficial at lower concentrations
but detrimental at higher ones, suggesting that concentration may
mediate at least some oligomeric species’ cytotoxicity and that low
concentrations of those A oligomers are unlikely to be cytotoxic
(53-55); TP oligomers may exert toxicity in a dose-dependent
manner so that low concentrations, even if not beneficial, may not
be harmful (56).

2.3.2 Brain clearance manages Af and tP

ApB, TP and their aggregates, especially small oligomers, are
constantly produced in the brain.While early onset AD is thought
to originate from overproduction, sporadic AD, the most common
form of AD, may originate from deficits in brain clearance (57-59).
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Mechanisms of AB and tP brain clearance have been discussed in
many reviews (33, 58, 60-65); we will briefly overview the essentials.
There are two primary clearance mechanisms: intracellular or
extracellular hydrolytic degradation; and transport out of the
brain followed by proteolysis in peripheral organs (58, 63, 64).
Intracellular AB or TP degradation can occur via the proteasome,
with or without ubiquitin mediation, the endosome-lysosome
or autophagy-lysosome pathways or via cytosolic proteases like
insulin-degrading enzyme (A only) (58, 61, 63, 65).

Extracellular A and tP are also cleared; they can, of course,
reengage the intracellular space, of neurons or glia, via autophagy,
endocytosis or chaperones and be processed by intracellular
mechanisms. Beyond this, extracellular proteases like neprilysin,
insulin degrading enzyme and matrix metalloproteases can degrade
Ap in the extracellular space (33, 63, 64). Extracellular AB can exit
the brain into the bloodstream by way of transporters like those
in the ATP binding cassette or low density lipoprotein receptor
families; AS can also be brought back into the brain, from the
blood, by receptors for advanced glycosylation end-products (33,
63, 64). Finally, the glymphatic system also participates in A and
7P clearance. Briefly, CSF enters the brain along the perivascular
spaces of cerebral arteries, is transported into the parenchyma
where it picks up A and tP before exiting along perivenous spaces,
delivering its contents to the peripheral lymphatic system (60, 62).

2.3.3 The prion-like hypothesis of AD

The prion-like hypothesis is a fundamental tenant of AD
research and implies that AS and P do more than simply aggregate
in place in AD; in Section 4, we will see that the prion-like
hypothesis strongly motivates the use of network mathematical
models to study AD biomarker evolution. The prion-like hypothesis
has its roots in the discovery of prions. In the mid 1980s PrP5,
a misfolded form of the PrP protein, was found to be both the
progenitor and propagator of scrapie in sheep; cytotoxic, misfolded
PrP% templated its own replication, converting physiological
PrP, spread to connected regions and aggregated (66-70). The
relationship between Af aggregates in AD and PrP% aggregates
in the neurodegenerative Kuru and Crutzfeldt-Jakob diseases led
to the postulate that physiological A may also act in a prion-
like manner, possibly leading to AD (69). The hypothesis that AS
may behave like PrPS implied: that some A structures (oligomers,
fibrils, plaques, etc) should be integral to AD progression; that these
structures should be a template for self-reproduction from non-AD
associated AS; and that this action should propagate AD pathology,
in particular to connected regions.

Evidence for the prion-like hypothesis in AD, that A and P
could spread from one brain region to another, potentially along
axonal projections, and reproduce through autocatalytic templated
misfolding, began mounting in the early 1990s. Steven Arnolds
histopathological analysis of TP NFT distribution suggested a
predictable regional NFT pattern; Arnold drew repeated attention
to the cortico-cortical axonal connectivity of P affected regions
(71). Shortly afterwards, Heiko and Eva Braak conducted another
histopathological analysis of TP and A pathology in 83 AD brains,
finding evidence for a 3-stage progression of AS pathology [(72),
Figures 1, 4] and a 6-stage progression of tP pathology [(72),
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A three-scale conceptual framework for discussing the influence of dietary patterns on AD. Macroscale patterns (top) are defined by broad
categorical intake; mesoscale patterns (middle) are defined by constituent scores (kcal, fiber, fat, vitamin C, etc.) aggregated to quantify a total intake;
microscale patterns (bottom) track the intake of single constituents (vitamin C, DHA, etc.).
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Figures 1, 4]; pathological aggregation was amplified when moving
from one stage to the next [(72), Figures 5-10]. There is now a good
deal of evidence that both A and TP behave in a prion-like manner
in AD (73-79). Broadly speaking: AB or P seeds, i.e., misfolded
aggregates of a sufficient size to act as a template, become sites
for creating new seeds from an existing population of AB or tP
monomers; these AB and TP seeds spread to axonally connected
regions, create more misfolded seeds there, which continue to
spread and further AD neurodegeneration.

3 Dietary patterns may influence AD
risk and AD biomarkers

The literature on diet and its potential relationship to AD
is extensive. The interdisciplinary research team interested in
developing novel AD-NAMs, to assist in diet-related AD research,
may find it daunting to approach the problem due to a lack
of clear starting points. For example, an AD-NAM designed to
predict incident AD risk in a large population adhering to broad
categorical dietary patterns, like the Western or Mediterranean
diets, may need to consider different approaches than an AD-
NAM that would be used to study micronutrient effects on
measured Ap levels in single patients. Though it remains an
open question as to what, specifically, these differences may be, a
reasonable interdisciplinary team would likely begin by searching
for evidence at these respective macro and micro dietary pattern
levels. This section introduces neuroscientists, computer scientists
and mathematicians to a set of approachable starting points that
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we believe are important for novel AD-NAM research. This section
may also be useful for nutritional science research students who are
not yet familiar with AD.

To simplify our presentation, this section uses our own
descriptive convention to categorize dietary patterns into 3
classes that reflect their underlying process of assessment and
their potentially different research motivations for developing
AD-NAMs.
meteorological and atmospheric sciences, we refer to these classes

computational Reusing terminology from the
as the dietary macroscale, mesoscale, and microscale (Figure 2).
The dietary macroscale looks to how adherence to a pre-defined
class of foods, generally measured by consistently meeting a
categorical set of portion allotment each day or week, impacts an
outcome of interest without being overly specific regarding the
constituents within those suggested categories (Section 3.1). The
dietary mesoscale quantifies the effect of an intake pattern on an
outcome of interest by examining the balance of a predetermined
list of constituents but is otherwise agnostic about the intake
pattern (Section 3.2). Finally, the dietary microscale concerns itself
with measuring the effects of a specific constituent, such as vitamin
A or eicosapentaenoic acid, on an outcome of interest (Section
3.3).

At each dietary scale, we briefly summarize key historical
elements before discussing the results for two questions that we
believe are central to efforts to develop AD-NAMs: which, if any,
dietary patterns show evidence of modifying incident AD risk;
and which, if any, dietary patterns show evidence of influencing
AD biomarkers of the A/T/N framework (Section 2.2). Due to the
nature of human studies, the literature on these two questions has
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demonstrated conflicting results. These conflicts have now mostly
been reviewed, at length, many times. Thus, we do not endeavor yet
another exhaustive review of the many individual studies on broad
or specific dietary constituents that may relate to AD. Instead,
at every possibility, we present the reader with the results of
recent pooled meta-analyses, and comprehensive umbrella reviews,
on these topics. To keep the discussion succinct, we state those
findings for which significant evidence was achieved from pooled
results in addition to the number of studies and the measure of
heterogeneity, whenever available. In this way, effective starting
points, based on a sense of statistical consensus, are advanced and
the interdisciplinary team interested in study specifics can consult
the cited meta-studies. In this way, we present interdisciplinary
teams with essential, approachable starting points for efforts aimed
at developing AD-NAMs, especially those based on mathematical
models, to investigate the links between dietary patterns and AD.

3.1 The dietary macroscale and AD

This section discusses how the dietary macroscale may affect
AD risk and AD biomarkers as described by the A/T/N framework
(Section 2.2). Dietary patterns at the dietary macroscale are
typically assessed by measuring adherence to pre-defined classes of
foods, like “baked goods” or “seafood,” through counting servings
per day, week or month. Common examples include the Western
Diet (WD), Mediterranean Diet, DASH Diet, and the MIND Diet.
The WD, in particular, attracted early attention with Newman’s
hypothesis that it may actually cause AD (80). Soon after, follow-up
studies began to connect a western diet (WD) to AD risk (81-83).
The WD is high in processed foods, sugars, salt, trans, and saturated
fats and low in polyunsaturated fats, vegetables, and fruits (84—
88). The WD is linked to inflammation and oxidative stress and, in
excess, can lead to obesity, high levels of circulating insulin, insulin
resistance and type 2 diabetes mellitus (87, 89). Oxidative stress,
inflammation, and insulin dysregulation are mechanistic factors
linking diet to chronic neuronal stress and to AD (61, 90).

AD is considered to be one of the “diseases of civilization”
that arose concomitantly with a western lifestyle and the
macroscale WD pattern of eating. However, the understanding
that the WD may act to increase incident AD risk took
decades to develop. It began in 1995 with an age-standardized
comparison of AD prevalence between elderly residents of
Ibadan (Nigeria) and Indianapolis of similar ethnic origin;
AD prevalence in the Indianapolis population was 4.43 times
higher (82). In 1996, another age-standardized study compared
elderly Hisayama (Japan) men to their ethnic counterparts
in O’ahi (Hawaii); AD prevalence was 3.6 times higher in
O’ahu (83). These studies prompted researchers to suspect
“environmental or cultural exposures” associated with migration
to the United States. Motivated by these studies, William
Grant published the first link between diet and AD risk in
1997. Grant found that total caloric intake and total dietary
fat, elevated in WD populations, were significant in increasing
AD prevalence while cereals and fish reduced AD risk (81).
Two years later, Grant added: that it was not clear if whole
grains and cereals were protective or may be displacing foods
that increased AD risk; that some fats, like omega-3 in fish,
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seemed to reduce AD risk while others, like arachidonic acid
or an imbalanced omega-3/omega-6 ratio, may increase AD
risk (91). He also pointed toward the possibility that dietary-
induced inflammation and oxidative stress may act to enhance the
risk of AD.

Grant’s early work helped to point a path forward and
that that
dietary patterns may indeed reduce AD risk. These include
the Mediterranean diet (MED) (92); the Dietary Approaches to
Stop Hypertension (DASH) diet (93); and the Mediterranean-
DASH Intervention for Neurodegenerative Delay (MIND) (94)
diet. A relationship between high adherence to MIND, MED,
or DASH and a reduction in AD risk continues to appear in

increasing evidence suggests some macroscale

cross-sectional and longitudinal studies. A recent systematic
review compiled an extensive list of studies that considered the
influence of MED, MIND, and DASH on a spectrum of cognitive
impairments, including AD risk (95). A case-controlled MED
cohort study found evidence for a 19% reduction in AD for
each increment of MED score while high MED adherence was
reported to reduce AD risk by at least 60% compared to low MED
adherence. [(96), Table 3]. Several longitudinal studies offered
evidence for a possible reduction in AD risk for high adherence to
MED, MIND, and DASH. Five longitudinal studies using the MED
dietary pattern reported reductions in AD risk ranging from 9%
to 54% depending on whether a continuous (per increment) MED
score or a tertile comparison was used (97-101). A longitudinal
study reported that high DASH adherence may reduce AD risk
by 39% and the MIND diet may reduce AD risk by 35% to 53%
depending on the adherence tier position in a tertiary analysis
(98). A recent pooled meta-analysis of 11 cohorts from 3 studies
also concluded that high MIND adherence reduced (11 studies,
I> = 35%), incident dementia, including AD dementia, risk by
17% compared to low (WD-like) adherence [(102), Figure 2]. It is
worth noting that results can vary regionally. For instance, MED
adherence was not associated with AD dementia in a number of
longitudinal French, Swedish and Australian studies (95), possibly
reflecting that diet is related to a third (2, 3), but not all, of the
modifiable AD risk factors which may themselves vary regionally
or that their regional dietary patterns may already confer sufficient
reductions in AD risk. Conversely, studies and meta-analyses using
cohort data from the UK and USA (98, 102) did find evidence for
changes in AD risk, suggesting that diet may be more prominent
among modifiable AD risk factors in those locations or that these
regional diets may possibly be associated with an increase AD risk.

Macroscale dietary patterns may also be associated with AD
biomarkers. A recent umbrella review amalgamated the reports
of meta-analyses and systematic reviews that considered the
mediating effects of diet on biomarkers of cognitive decline,
including AD (103). The reported results suggested that significant
associations may exist between: reduced hippocampal volume and
WD adherence; reduced thickness of the frontal cortex and WD
adherence; increased hippocampal volume and MED adherence;
increased Ap deposition with (high glycemic) WD adherence;
reduced AB deposition with MED adherence (for Pittsburgh
Compound B imaging radiotracer studies but not for studies using
other Ap radiotracers, 4 studies); higher baseline brain metabolism
and MED adherence; and a decreased rate of brain metabolic
decline and MED adherence.
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The gold standard of AD biomarker assessment is postmortem
analysis, though these studies are less encountered in the nutritional
literature. The Rush Memory and Aging Project tracked both
dietary intake and a postmortem analysis of several participants,
leading to four recent publications. MIND dietary score was
correlated with better cognitive function before death and slower
cognitive decline, and these associations remained significant
after controlling for postmortem confirmation of AD (104, 105).
MIND and MED, diet scores were significantly and inversely
related to postmortem total brain AS levels and global levels of
combined (A and tP) AD pathology, but not TP NFT pathology
alone (106). A postmortem RNA-seq analysis also suggested that
MIND dietary score may be associated to a set of 50 genes; the
strongest associations were related to gene expressions mediated
by (positive association) educational attainment and (negative
association) AD-related white matter structural changes (107).
Taken together, there may indeed be good evidence to suggest that
macroscale dietary patterns could be related to AD biomarkers of
the A/T/N framework. It is not fully clear, from these studies, what
mechanisms, like oxidative stress or inflammation, may yet link the
dietary patterns to AD biomarker outcomes.

3.2 The dietary mesoscale and AD

This section discusses how the dietary mesoscale may affect AD
risk and AD biomarkers as described by the A/T/N framework
(Section 2.2). Dietary patterns at the dietary mesoscale are, in a
sense, an attempt to instrument a macroscale pattern for research
use. Mesoscale dietary patterns assign an overall score to an intake
by summing over a set of constituents. For a diet concerned with
oxidative stress, we may assign a score, N, to “nut consumption
in g/day” that relates nut consumption to markers of oxidative
stress measured in the blood (108, 109). Consuming 200g of nuts in
one month would add N (200/30) to that “oxidative stress” dietary
pattern. Constituents at the mesoscale can be broad, like “nuts” or
narrow, like “almonds” or even “vitamin D3.” This differs from
macroscale diets, like MED, which assign pre-defined adherence
values, like 0, 0.5, or 1, to broad categories, like “consumed 5 daily
servings of fruits and vegetables,” based on how closely that goal
was attained (94, 110).

Studies based on the dietary inflammatory index (DII)
demonstrate that the dietary mesoscale could impact AD risk. The
DII originated as a means to study diet-mediated inflammation
(108, 109). It was revised (111) to the energy-adjusted DII (E-
DII) to follow existing practices for assessing energy intake in
113). E-DII values for individual
dietary constituents are not directly available in the literature due

epidemiological studies (112,

to a patent by the original authors; however, unadjusted DII values
are available alongside a helpful description of score construction
(109). Many studies report that the following nutrient density was
used to determine their E-DII scores:

Total Nutrient B Total Nutrient
(Total kCal) " Total kCal
1000

The first DII study to consider the AD pathway analyzed a
cohort of American women; it established that the incidence of

Nutrient per 1000 kCal =
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mild cognitive impairment (MCI) or probable dementia was 27%
higher in patients with high DII scores, compared to those with
low scores, with fewer years without impairment [(114), Table 4,
Figure 2]. More recently, two additional large UK cohort studies
(UK Biobank) found interesting relationships between DII and
AD risk. One found that that high (Q5) DII subjects were 66%
more likely to develop AD compared to mid (Q3) DII subjects,
controlling for age and sex, whereas high (Q5) DII subjects were
59% more likely to develop AD compared to low (Q1) DII subjects
when controlling for age, sex and 17 other covariates (115). This
work also found that DII had subgroup effects, on AD risk,
related to both sex and education [(115), Figure 3] and that the
relationship between DII and all cause dementia was nonlinear. A
second large UK Biobank study also found a significant nonlinear
relationship, but this time between DII and AD risk [(116), Figure
2]. In particular, above a threshold DII score (1.3), each unit of
DII increased incident AD risk by 39% [(116), Table 3]. However,
below this threshold the DII was not significantly associated with
AD risk and was not overall significantly associated with AD risk.
This result suggests that the relationship between dietary-related
inflammation and AD risk may be nuanced and resilient to some
initial level of dietary-related inflammation but is significantly,
and nonlinearly, increased once dietary-related inflammation is too
high. This group also found subgroup effects mediated by BMI
and education but not by sex, partially conflicting the previous
group’s findings.

The previous studies were carried our in the USA and the UK
but relationships between the mesoscale DII and incident risk along
the AD pathway appear to be consistent in both Chinese and Greek
cohorts. Two Chinese population studies found that high scores
were, respectively, 1.46 (E-DII) and 1.23 (DII) times more likely
to develop MCI (117, 118); a similar Chinese population study
showed that high DII conferred a 50% increased risk of incident
MCI (119). Five years later, the mediating effect of DII was studied
in a Mediterranean cohort (120); participants in the highest tertile
of DII score were about 3 times more likely to develop dementia, the
strong majority of which were AD cases, than those with the lowest
DIIscore (121). Finally, a recent meta-analysis of inflammatory diet
and cognitivie function found a 33% increase to incident MCI risk
(4 studies, I> = 0%, p = 0.39) and a 34% increase in incident
MCI plus dementia risk (5 studies, 2 = 36%, p = 0.18) with a
pro-inflammatory DII or E-DII score [(122), Figure 2].

Evidence for mesoscale dietary patterns and AD biomarkers is
limited. A large UK biobank study found evidence of an association
between increasing increments of DII score and a decrease in gray
matter hippocampal volume [(116), Table 4] after adjusting for
13 covariates. Aside from this, we found only one other related,
albeit indirectly, study. E-DII score was significantly correlated
with 55 immune proteome constituents in blood samples. The
study identified six of these proteins (CXCL10, CCL3, HGF, OPG,
CDCPI, and NFATC3) as significantly associated with increased
odds of cognitive impairment using data from external cohorts
(123). Moreover, AParso levels were significantly correlated
with CXCL10, CCL3, NFATC3, HGEF, and OPG while NfLL was
significantly correlated with CXCL10, CCL3, CDCP1, and OPG;
brain atrophy was significantly correlated with OPG, CCL3, and
CDCPI. However, statistical significance is not transitive and the
direct effects of DII on AD biomarkers remains an open question.
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3.3 The dietary microscale and AD

Around the time that Grant linked diet to AD, vascular
factors, and oxidative stress were postulated as contributors
to AD pathogenesis. These two views led researchers to ask
whether specific micronutrients may mitigate AD risk, including:
B vitamins, for their relation to elevated plasma homocysteine
in vascular disease; and Vitamins C and E, which are potent
antioxidants. Martha Morris and Robert Clarke offered some of the
first results. Morris’ cohort study showed no cases of AD incidence
in a subgroup supplementing with Vitamin C or Vitamin E despite
the expected rate being between 9% and 14% but the cohort was too
small for significance (124). Clarke showed that low serum folate
(Bg) conferred a significant 2.3 fold risk for clinically diagnosed AD
while low Bg or By, significantly increased the risk for histologically
confirmed AD by 3.3 or 4.3 fold, respectively [(125), Table 2].

The early work of Morris and Clarke opened the door to
research into the role of micro- and macronutrients, as opposed to
whole diets, in AD. About a decade later, Morris published a review
of several cohort studies that included a view on dietary fats and
pointed out conflicting AD-risk results for vitamin E and vitamin
C (126). Given the sheer abundance of micro- and macronutrients,
these early perspectives paved a suggestive path forward. A few
years later, a systematic review of AD patient studies concluded
that plasma levels of vitamins A (9 studies, > = 87%), C (8
studies, I> = 88%), E (20 studies, I>* = 87%), B1» (37 studies,
I> = 87%), and folate (31 studies, I> = 88%) were significantly
lower in patients with AD but vitamin D (5 studies, I> = 95%) did
not achieve significance (127). A recent meta-analysis of studies of
vitamin deficiencies, between AD and control patients, may shed
further light on this early work (128). Vitamins A (9 studies, I =
2.4%), C (8 studies, I*> = 90.7%), E (21 studies, I> = 90.2%), and
folate (31 studies, I> = 93.3%) all showed significant reductions
in AD patients versus controls; the reported study heterogeneity
was substantial in all analyses except for Vitamin A. An additional
network meta-analysis (I = 91.9%) suggested that Bj, may also be
reduced in AD patients. Overall, the pooled results of the studies
showed that deficiencies were, in order from greatest to least,
vitamin C, then D, folate, E, A, and B;,. Some limitations to these
analyses were also reported. In addition to the substantial inter-
study heterogeneity, mentioned above, for most of the vitamins, a
meta-regression also found that age may account for the vitamins
C and E deficiencies, but not the others, in the AD group while
a publication bias analysis found that biases in the vitamin E and
folate publications [(128), Sections 3.3-3.6].

Nutrient deficiencies amongst patients with AD motivated
incident AD risk research at the microscale; these results can
be nuanced. For instance, it may be unclear whether vitamin A,
or its precursors, reduces incident AD risk. A recent systematic
review and meta-analysis concluded that low serum levels of «-
carotene, 3-carotene, and B-cryptoxanthin, all retinol precursors,
were not associated with AD status (129) while the non-vitamin
A carotenoids lutein and zexanthin were. Two additional meta-
analyses found no evidence (6 studies, I> = 0%) that dietary or
supplemental vitamin A [(130), Figure 4, Table 2] or (5 studies,
I> = 252%) B-carotene [(131), Figure 2] reduced incident AD
risk. However, vitamins E and C both showed separate associations
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with reduced incident AD risk in both meta-analyses; vitamin E was
associated with 23%-24% risk reduction (12 studies, I> = 20.9%
and 12 studies, I> = 54%) while vitamin C was associated with
a risk reduction of 19% (11 studies, I> = 0% and 11 studies,
I2 = 37.9%) (130, 131). These studies did not find an association
between combining vitamins E and C and reduced AD risk. Several
large, recent meta-analyses have considered the effect of B vitamins
on AD risk.

Patients with plasma or serum folate < 13.5nmol/L were
1.94 times more likely to be in the AD group than the control
group (6 studies, I = 0.0%) while there was no evidence of a
group preference if plasma/serum folate was above this cutoff. For
the plasma/serum folate deficient group (< 13.5nmol/L), another
meta-analysis (4 studies, I> = 0.0%) found an 88% increase
in (relative) incident AD risk. In addition, daily folate intake
exceeding 400ug was associated with a 56% reduction in long-term
AD risk (3 studies, I> = 35.3%) and a 24% reduction in short-term
AD risk (5 studies, I> = 50%) [(132), Figures 3-5]. A recent meta-
analysis looking at B-vitamins and incident dementia reinforced
previous findings on folate but did not find an association between
By, or Bg (5 studies, I> = 0%) and incident dementia risk [(133),
Figure 3]. Favonoids were also examined in two current, large-
scale meta-analyses but no significant association (5 studies, I> =
73.3.6% and 3 studies, > = 0%) between flavonoid intake and
incident AD risk was found in either case (130, 131) Finally, a
recent meta-analysis has also considered the effects of vitamin D
deficiency on AD risk. They found (6 studies, I* = 63%) that
serum/plasma Vitamin D levels below 25nmol/L increased long-
term incident AD risk by 65% [(134), Figure 5], though it should
be noted that the effects of vitamin D on AD risk may be mediated
by ApoE €4 status (135).

A potential microscale role for w-3 fatty acids in AD was
conjectured in one of Morris’ early reviews (126). Around that time,
epidemiological evidence was suggesting that dietary fish reduced
AD risk; fish are rich in w-3 polyunsaturated fats (PUFAs) like
DHA, EPA and ALA. Sandra Kalmijn found a 60% reduction in
AD risk with high fish consumption (> 18.5g/d) in a 1997 study
[(136), Table 4]. Similar results from Pascale Barberger-Gateau
and Morris quickly followed (137, 138), as did evidence, from
Barberger-Gateau and Tina Huang, that the protective benefits of
fish consumption on AD risk may be mediated by ApoE €4 status
(139, 140). These results led some to conclude that w-3, abundant
in fish, was reducing the risk of AD but, as Penny Dacks pointed
out in 2013, this hypothesis had not yet been directly tested (141).

Contemporary evidence from recent meta-analyses has shed
new, more nuanced, light on the hypothesis that »-3 may reduce
AD risk. Pooled evidence seems to suggest that high dietary fish
intake may reduce incident AD risk (10 studies, > = 20%) by
20%. However, a subgroup analysis suggested that risk mitigation
may vary depending on several factors like geographical region, the
duration of the study and average participant age, etc. [(142), Figure
1, Table 2]. To further nuance the relation between w-3 and AD
risk, the recent results of a large US-based cohort study (N = 1,670)
suggested that, despite substantial AD risk in the general ApoE €4+
population, there was no evidence of difference in AD risk between
ApoE €4+ and ApoE €4— individuals when -3 supplementation
was both high and long-term [(143), Figures 4a, b]. This result
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suggests the possibility that the effects of w-3 supplementation,
on AD risk, may be mediated by ApoE €4 status. A second large
US-based cohort study (N = 1,135), which also included a meta-
analysis, investigated this observation in more detail. This study
first offered evidence that long-term w-3 supplementation may
reduce incident AD risk by at least 63% but that this effect may
not be at all evident from measuring blood biomarkers and may be
further mediated by sex, cognitive and ApoE €4 status [(144), Tables
2, 3]. In particular, long term w-3 supplementation reportedly
reduced AD risk by 71% in the ApoE €4+ group but no significant
reduction was found for ApoE €4— participants while none of the
blood biomarkers (w-3, DHA, ALA) were significantly associated
with AD risk, regardless of ApoE €4 status. A pursuant meta-
analysis of the literature provided pooled effect estimates; studies
adjusting for ApoE €4 status reported that the risk of general
cognitive decline was reduced by (8 studies, I = 65%) dietary w-
3 and by (9 studies, I*> = 42.4%) dietary DHA but not by general
PUFA or EPA; this reduction vanished for studies not adjusting for
ApoE €4 status. For AD risk, the meta-analysis reported significant
findings for a 24% reduction (6 studies, I> = 56.9%) in AD
risk by dietary DHA but not by other PUFA [(144), Figure 2,
Supplementary Table 6]. Taken together, Morris’ original conjecture
for the role of w-3 in AD may be correct but nuanced by the role of
DHA, ApoE €4 status and supplementation duration.

Fats other than w-3s may influence AD risk at the microscale.
Morris was the first to show that high levels of dietary saturated
(SFAs) and trans fatty acids (TFAs) may increase AD risk by 2.2 and
2.4 times, respectively (145, 146). Ten years later, systematic reviews
of SFAs and TFAs were available from studies conducted on large
AD cohort data (CAIDE, Rotterdam, WHICAP and CHAP) (147,
148). High SFA consumption was associated with an increased MCI
risk in the CAIDE cohort and an increased AD risk in the CHAP
cohort [(147), Tables 1, 2]; SFAs were moderately associated with
an elevated AD risk in WHICAP. CAIDE, CHAP and WHICAP
showed evidence of ApoE €4 status potentially mediating SFAs
and AD risk or cognitive decline (147, 149). A meta-analysis of
the Rotterdam, CAIDE and CHAP studies found that SFAs may
increase (3 studies, I* = 0%) incident AD risk by 87% [(150),
Table 3]. A second meta-analysis did not find evidence that dietary
fat intkae, including SFA intake (6 studies, I2 = 57.6%), was
related to AD risk [(151), Figure 2]. However, when the authors
removed a single, highly heterogeneous Rotterdam cohort study
from the meta-analysis, dietary SFAs were once more associated
(5 studies, I> = 0%) with an increase of AD risk at 32%. Results
for TFAs remain mixed, showing a decrease in AD risk in the
Rotterdam study with a potential increase found within the CHAP
study (147, 148). Finally, levels of LDL and HDL cholesterol have
now acquired an official “risk factor” status for dementia (3). A
recent umbrella meta-analysis suggests evidence that high serum
LDL levels may increase AD risk by 155% [(152), Figure 2, Table
2, Section 3.1] Around the same time, a mendelian meta-analysis
found that each 1mg/dL of total circulating cholesterol increased
the incident risk of AD by 3% in €3 relative to €, carriers and by 8%
in €4 relative to €3 carriers. Each mg/dL reduction in circulating
HDL-C was associated with a 130% increase in AD risk for €4
vs. €3 carriers but was not significant for €3 vs. €, carriers (153).
More recent large studies of high LDL and low HDL have focused
on the risk of general dementia (154, 155) and the question of
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whether dietary levels of LDL and HDL may modify incident AD
risk remains open.

The dietary microscale may also be related to the A/T/N
biomarkers of AD (Section 2.2). A recent review (156) summarized
the literature on microscale relationships observed in clinical
trials. Low serum DHA levels were significantly related with
brain AB PET, regardless of ApoE €4 status, and serum DHA
levels were positively correlated with both hippocampal and
entorhinal regional brain volumes [(157), Figures 1B, 2A, B]. DHA
supplementation may significantly reduce circulating A B4, but not
APBao, levels and significantly increase brain clearance pathways
[(158), Tables 3, 4]. Vitamin D supplementation may significantly
reduce blood ABs;, BACEI and APP levels (both used in the
making of AB) [(159), Figure 1, Table 4].

Three trials suggested that: serum DHA may be inversely
correlated with brain amyloid PET, regardless of ApoE e4
status [(157), Figure 1]; DHA supplementation may significantly
decrease levels of blood ABy [(158), Table 3]; and vitamin D
supplementation may significantly reduce plasma Apfy;, alongside
BACEI and APP levels, [(159), Figure 1, Table 4] in patients
with AD. Other studies showed that: blood LDL-c levels were
positively correlated with A PET (160); high blood LDL-c levels
strengthened the correlation between AS and tP deposition (161);
ApB PET was negatively correlated with Bj,, Vitamin D, total
w-3 and -3, but not DHA, intake [(162), Table 2]. The latter
study also investigated larger groupings of microscale nutrients,
like “vitamin E with MUFA and PUFA; and AD-associated
brain regions. In AD regions: vitamin B and mineral intake was
associated with increased cortical volume; vitamin E, MUFA, and
PUFA intake was associated with increased metabolism; vitamin
A, vitamin C, carotenoid, and fiber intake was associated with
increased metabolism; vitamin Bjj, vitamin D, and zinc intake was
associated with increased metabolism, increased cortical volume,
and reduced ApB; and saturated fats, trans fats, cholesterol and salt
intake was associated with decreased metabolism and decreased
cortical volume [(163), Tables 3-5]. This study raises the question
of whether some microscale constituent interactions may be
important for influencing AD biomarkers.

4 Mathematical network models of
AD biomarkers

A scientific model is an accessible representation of a
more complex system or process. Models are ubiquitous in the
nutritional sciences (164); they are often used to learn, generate,
test or predict hypotheses or outcomes for how a nutritional
substance may positively or negatively impact human health (165,
166). A mathematical model (MM) is a scientific model that
uses mathematics, instead of an organism or cells, as a means to
quantify relationships of interest. Mechanistic MMs are frequently
designed and used by nutritional scientists and obesity researchers,
often working with mathematicians and engineers, to test the
sufficiency, predictive power or range of possible measurements,
or assumptions, on a system’s outcomes. In this way, MMs can
stand in for costly or ethically challenging experiments or be used
to extrapolate experimental findings to other populations.
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Nutritional scientists have been using MMs, of their own
design, for several decades: energy balance mathematical models
(EBMMs) (9). At the core of EBMMs is the energy balance principle
R = I — E; R, I, and E are kcal/day stored, input and expended,
respectively. The terms R, I, and E have been specialized across
different models to study fat and lean body mass fluctuations,
metabolic adaptations to bodyweight changes and the effect of diet
composition, not just calories, on body weight and fat mass (167-
170). MMs are now starting to appear in AD research. A new class
of AD-related mathematical models (ADMMs) have emerged, to
understand and predict A/T/N biomarker progression, which bear
a close resemblance to the EBMMs used throughout the nutritional
sciences. These new ADMMs are based on ordinary differential
equations (ODEs), like EBMMs, but are posed on a network graph.
These new network ADMMs (N-ADMMs) have been used to study
and to predict A/T/N biomarker evolution (Section 2), but do not
yet express the mechanisms that could link dietary patterns to that
AD biomarker pathology. That current N-ADMMs do not express
mechanisms related to dietary patterns is a significant gap. Closing
this gap will enable novel, simulation-based AD-NAMs supporting
research to reduce AD prevalence through dietary interventions.

This
neuroscientists to the fundamental ideas underlying recent
N-ADMMs and, specifically, their use to study AD biomarkers.
This section may also be useful for mathematics and computer

section introduces nutritional scientists and

science research students who are not yet familiar with the
practical aspects of modeling AD biomarkers mathematically
on brain graphs. Sections 4.1-4.3 introduce the reader to the
three essential building blocks of N-ADMMs: network ODEs,
brain network graphs and the graph Laplacian. Sections 4.4-
4.6 discusses the contemporary use of N-ADMMs to model
A/T/N biomarker evolution. This section does not review other
computational methods for AD research, such as the use of Al
to study AD biomarker neuroimages. Instead, we focus on recent
N-ADMMs for their relationships with EBMMs, their mechanistic
interpretability, their ability to incorporate data and for their
balance of spatial resolution with computational cost.

4.1 An accessible introduction to network
differential equations

The use of mathematical models to study the brain dates
back to the mid 20t century (171, 172). MMs for AD research
are more recent; significant computing power and advanced
numerical methods have allowed complex, coupled systems of
partial differential equations (PDEs) and high-spatial-resolution
brain geometries to be used as MMs of AD pathology; these
models can typically be solved in hours to days (173-177).
These ADMMs have three drawbacks: they are often difficult
to analyze mathematically, making computational simulations
very important; however, they are too computationally expensive,
especially for translational use; and they require highly specialized
training to extract meshes from neuroimages, to design appropriate
numerical methods and to implement the software for simulations.
Conversely, EBMMs consist of a small number of ordinary
differential equations (ODEs), can be solved in seconds or minutes
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and are amenable to mathematical analysis; their drawback is that
they lack spatial resolution, an important factor for the evolution of
A/T/N biomarkers, like AB and tP, in AD.

Network ODEs share in the advantages and limitations of
traditional PDE and ODE models. They balance spatial resolution
with computational cost and mathematical analyzability. Network
ODE models have a three-part structure: (1) a graph G, which is
often undirected; (2) a collection of ODEs associated to each vertex
in the graph; and (3) a matrix, derived from the graph itself, that
allows the ODEs defined at each graph vertex to communicate
across the edges. For a simple example, consider the prototype ODE

y=ay, y(0)=yo, (4.1.A)

where « and y are pre-selected real numbers. The solution to
Equation 4.1.A is y(t) = yoe*’. Let G be a graph with two vertices,
v and v,, and one edge connecting them. Consider y; defined at v;
and y, defined at v, by Equation 4.1.A as

(4.1.B)

y1 =1y, Y2 = a2y,

with »1(0), »2(0), @y and «, given. Equation 4.1.B can be
made into a network ODE by introducing one or more network
communication matrices. A network communication matrix is any
matrix derived from the connectivity structure of the graph G; a
simple example is the graph adjacency matrix. For our two-vertex
graph G and ODE system (Equation 4.1.B), the adjacency matrix,
A, and system state vector, y, are

_ y1(8)
NP

Using A and y, above, the network ODE system can be
expressed using either of the equivalent equations

01
10

a1)1

2
, or V= Ay + oy, fork=1,2
a2y2i| Yk Z kiVi 1343

y=A4y+ [
j=1

(4.1.0)

Given the choices above, Equation 4.1.C has only two

equations. Written explicitly, these are

Y1=y2+oy, Y2 =y +ay. (4.1.D)

Equation 4.1.C, or equivalently Equation 4.1.D, show that y,
changes based on the value of y, and vice versa, reflecting the
connectivity of the graph G. This example demonstrates how
network ODEs add spatial detail, through network communication
matrices derived from G, while still reflecting the mathematical
structure and lower computational complexity of the prototype
ODE system (Equation 4.1.A) defined at each vertex, thus balancing
the analytic potential, spatial resolution and computational cost of
the resulting model.

4.2 The brain’s structural connectome is a
graph

In neuroscience, the term “connectome” refers to a connectivity
graph between brain regions; a functional connectome encodes
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A stylized illustration of a brain structural connectome graph. A brain T1 MRI sequence is segmented into anatomical regions (colored regions in
background, some anatomical labels are shown for emphasis) to define the vertices (circles in foreground) of the brain connectome graph. The
vertices are connected by edges (gray lines) that represent the axonal connectivity estimated by a tractography method applied to a

diffusion-weighted MRI.
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brain regions that activate together whereas a structural connectome
shows how anatomical brain regions are connected by white matter
projections (178). Structural connectomes (Figure 3) start with
a patient MRI that includes T1 and diffusion weighted (DW)
sequences. Second, the T1 image is segmented into anatomical
regions; these regions will be the conntectome graph’s vertices.
Third, the segmented results and DW image data are processed by a
tractography method determining which regions are connected by
axonal projections; this step produces the connectome graph’s edges
(179, 180). Several software packages are now available that handle
steps two and three (181-184) and have become an indispensable
part of ADMM:s based on network ODEs.

4.3 The graph Laplacian models diffusion
on a graph

This section defines the graph Laplacian, a network
communication matrix that models diffusion on an undirected
graph G; in ADMMs, G is typically a structural connectome
(Figure 3). Suppose the undirected graph G has N vertices labeled
from v; to vy. The adjacency matrix of G is defined as

A — 1 if v; is connected to vertex v; (43.4)
7o otherwise -2
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Using A, we define a diagonal matrix D with i diagonal entry
Dj; determined by summing across the i row of A as:

N
Dy =)_ Aj. (4.3.B)
j=1
The graph Laplacian of G is defined by
Djj wheni=j
py={ 0 W= (4.3.0)

—Ajj whenizj '

With an adjacency matrix defined by Equations 4.3.A, 4.3.C
amounts to L;; being —1 when i # jand L;; is the sum of the entries
in the i row of A. Intuitively, the i diagonal entry of L contributes
to flow into graph vertex v; while the off-diagonal entries contribute
to flow out of v;. Simple diffusion on a graph G is then defined by
either of the equivalent equations

N
y=—-Ly, or yi=— Zijyj, (4.3.D)
j=1
with an initial vector y(0) = yo of non-negative entries. Since

—L, in Equation 4.3.D, is derived from the connectivity of G, it
is a network communication matrix for network ODE systems. In
practice, brain connectomes are weighted graphs. A weighted graph
has a positive weight w;; > 0 associated to the edge connecting
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vertex v; to vertex vj, indicating the strength of the edge connection.
For a weighted graph G, the weighted adjacency matrix A is

i wjj if v; is connected to vertex v
ij =

>

0 otherwise

and the weighted diagonal matrix and weighted graph Laplacian
follow from Equations 4.3.B, 4.3.C, using A instead of A.

4.4 The first network ADMM was simple
graph diffusion

The simplest network ADMM (N-ADMM) was developed by
Ashish Raj in 2012 to study hypometabolism and atrophy due to A
or P in AD (185, 186). This model assumed: a weighted structural
connectome brain graph (Figure 3) was available; that A or TP was
correlated with hypometabolism and atrophy; and the spread of Ap
or TP was governed by simple graph diffusion as in Equation 4.3.D.
The simple network ADMM was

pi(t)

pa(t)

p=—Lp, with p(0) =po andwhere p(t)= . ,

pN(t)
(4.4.A)

where pi(t) signifies AB or P in brain region v; the authors
used the direct solution of Equation 4.4.A to derive an equation
for hypometabolism and atrophy that could be directly computed
[(185), Equation 6; (186), Equation 5]; they compared their
predictions to data, marking the first validation of an N-ADMM.
Raj and colleagues applied (Equation 4.4.A) to study other
neurodegenerative diseases (187, 188). However, simple graph
diffusion conserves misfolded protein mass and eventually settles
into a uniform steady state. Thus, simple diffusion cannot model
two important mechanisms in AD biomarker evolution: brain
clearance and the prion-like hypothesis (Sections 2.3.2, 2.3.3). To
address this, N-ADMMs would need an extension to account for
the creation and removal of A and 7P biomarker mass.

4.5 Network ADMMs are based on a mass
balance principle

I — E of EBMMs,
ADMMs use a mass (or concentration) balance principle B = P—C

Like the energy balance principle, R =

where B is the rate that the mass (concentration) of a biomarker, like
AP or TP, appears, P is the rate of biomarker mass (concentration)
production and C is the rate of biomarker mass (concentration)
clearance from the brain. The ODE form is B = P — C where B
is now the biomarker mass (concentration). In an N-ADMM, there
is one balance equation per brain region; since A and TP can move
from one brain region to another via white matter connectivity
(graph edges), the balance principle in brain region vj of the graph
can be specialized to

B = (WP — W) + P — Gy, (4.5.4)
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where W}Cn and W™ are the incoming and outgoing rates of
biomarker mass (concentration) via white matter (axon bundle)
connections, and Py and Cj represent the endogenous rates
of biomarker production and clearance within brain region wvy.
Comparing with the balance principle B = P — C, the production
(P) and clearance (C) rates of biomarker in each region is P =
W]i(n +Prand C = Wttt Cy; we drop the circumflex for simplicity.
Currently, most N-ADMMs assume

N
W}i(n _ W}({)ut — ZAkj (Bj _ Bk) R (4.5.B)
j=1

where Ay; is the k™ row and j™ column of the graphs (weighted)
adjacency matrix. Equation 4.5.B is mathematically equivalent
to using the negative (weighted) graph Laplacian, —L, as the
network communication matrix. Thus, in general, the majority of
N-ADMNMs can be written in a vector form, like Equation 4.1.C, as

N

By=—p ZijBj + Py — C,
=1

(4.5.C)

where p > 0 mediates the graph Laplacian diffusion
(communication) speed and both Py and Cj are typically defined
by the same set of equations for every vertex vy, just as in Equation
4.1.C. Note that Equation 4.4.A satisfies this condition, where Py =

Cy = 0 for every brain region vj.

4.6 Contemporary ADMMs model
prion-like AD biomarker evolution

Two watershed interdisciplinary studies were published
in 2019; a computational study of prion-like spreading in
neurodegenerative diseases (177); and, motivated by the previous
work, the first N-ADMMSs, all of which used a brain structural
connectome graph (Figure 3), to incorporate the prion-like
hypothesis for Ap and P in AD (189). The second work adapted
three MMs from other fields to N-ADMMs: the Smoluchowski
model, describing the kinetics of fragmenting and aggregating
particles; the Heterodimer-Homodimer (HH) model used to
studying prion protein (PrP); and the Fisher-Kolmogorov (FK)
population model (189). The current state-of-the-art in network
ADMMs can be mostly understood by examining (Equation
4.5.C) for the HH and FK models; for the Smoluchowski
model, see Brennan and Goriely (190), Fornari et al. (189), and
Thompson et al. (191).

Network ADMMs must explain observed AD biomarker data
(72-74) and have prognostic capacity even when imaging data are
scarce. To meet these challenges, Ellen Kuhl, Alain Goriely and
colleagues proposed the FK network ADMM, defined by choosing

2

Py =apy, Cp=oap;
where & > 0 is constant and p, instead of B in Equation 4.5.C,
signifies A or tP. This quadratic model expresses an initial

exponential growth of misfolded and aggregated A, followed by
a linear growth phase which then reaches a plateau in each brain
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The Fisher-Kolmogorov model states that A (or P) pathology (p) expands exponentially when small oligomers dominate (left, 0 < p « 1). As
aggregates damage cells and fibrils form, new aggregates are made at a linear rate (middle, p ~ 1/2). As neurons die en masse, AB production is
significantly attenuated; thus, further misfolding and aggregation effectively halt (right, p ~ 1).
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region vi (Figure 4); this growth phenomenon was observed by
Clifford Jack in patient AB image data (73). The normalized FK
network model is

N
Pr=—pY_ Ligpj+api (1—pr). (4.6.A)

j=1

Goriely, Kuhl and colleagues demonstrated the potential of
Equation 4.6.A in data-driven AD research. They showed: that
it supports the anisotropic axonal spreading hypothesis and not
isotropic diffusion (192); that it can reproduce a wide array of P
staging patterns, including Braak staging (193); and that it can
be used to infer patient parameters for tP spreading and atrophy
rates (194-196). They also used a variant of Equation 4.6.A to test
the hypothesis that brain clearance can significantly perturb the
trajectory of TP pathology in AD (197).

The second fundamental N-ADMM is the HH model
(Figure 5), which has a normal and a seed-competent (AS or 7P)
population at each vertex (198); the term “seed-competent” refers to
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a fibril, plaque or suitable oligomer that can initiate the misfolding
and aggregation of another protein population. The prototypical
form of the HH model is

p=a—bp—cpp (4.6.Ba)

p = —dp + cpp, (4.6.Bb)

where p and p are the normal AB (respectively TP) and seed-
competent AS (respectively tP) population, a > 0and b > 0
are the Ap monomer production and clearance rates, d > 0 is the
clearance rate of seed-competent A and ¢ > 0 is the rate that new
seed-competent AS (respectively tP) is formed from A monomer
(rP) and seed-competent AB (respectively TP). Equation 4.6.B can
be lifted to an N-ADMM model by choosing

Pxormal —a Czormal — bPk + CPkf’k
al ~ a ~
P = cpip C = dpy
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FIGURE 5

The Heterodimer-Homodimer model in AD simplifies complex dynamics. An AB monomer population (p, blue-green spheres) is produced (rate a)
and cleared by cellular, vascular, or glymphatic mechanisms (rate bp, top middle). AB monomer in contact with the seed-competent population [p,
Ap oligomers (composites of red spheres), fibrils (blue-green twisted ribbons), and plaques (brown hay-like masses) shown] misfolds, aggregates and
fragments (gray box), creating new seed competent structures (rate cpp). The seed competent population can also be cleared (rate dp, bottom
middle) by cellular, vascular or glymphatic means. tP kinetics produce the same set of equations.

in Equation 4.5.C. The full expression is phenomena, including: interactions between Af and =P (199);
the coupled nature of neuronal activity, AS and tP pathology

N . .
. N (200, 201); and feedback between cerebrovascular integrity and Ap
Pr=—p E Lyipj + a — bpr — cpip

— (4.6.Ca) spreading in AD (202).
];I Starting with the pioneering work of Raj et al. (185,
15=—PZijIA7j—dIA7k+CPkI3k~ (4.6.Cb) 186) and Pandya et al. (187, 188) and continuing with a

j=1

Though more complex than Equations 4.6.A, 4.6.C is more
physiologically descriptive; both A and P start as physiological
monomers (p) and become toxic aggregates (p) after associating
with other toxic aggregates. The toxic aggregate population
increases to a plateau (189), just as Equation 4.6.A does, in
accordance with AB imaging data (73). Whereas having only
two parameters gives Equation 4.6.A a data-fitting advantage, the
increased expressiveness of Equation 4.6.C is often more suitable
for investigating mechanistic AD phenomena, especially those
observed in vitro or in animal models. Toward this end, Goriely
and colleagues used the HH model to study a number of AD
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multitude of breakthrough contributions from Fornari et al. (189),
Weickenmeier et al. (177), Brennan and Goriely (190), Thompson
et al. (191), Schafer et al. (192), Putra et al. (193), Chaggar et al.
(194), Schafer et al. (195), Schafer et al. (196), Brennan et al.
(197), Thompson et al. (199), Alexandersen et al. (200, 201), and
Ahern et al. (202), we have seen enormous contemporary progress
in N-ADMMs. N-ADMMs balance computational cost, spatial
expressiveness and relatively approachable mathematical analysis.
Similar to EBMMs, N-ADMMs are rooted in a conservation
principle (Equation 4.5.A). N-ADMMs use connectome graphs
constructed from patient neuroimages; they can fit patient
A/T/N biomarker data for prognoses and be used to explore
mechanistic hypotheses. However, N-ADMMs do not yet express
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the mechanisms to connect them to modifiable risk factors
mediated by diet. Linking diet to N-ADMMs is an interdisciplinary
frontier in AD and nutritional science research.

5 Discussion

The question of “how modifiable risk factors affect AD
biomarker evolution” is of contemporary importance. Dietary
patterns are mutable behaviors that are related to a third of
the modifiable risk factors identified for AD (2, 3). The World
Health Organization and the National Institutes of Health are now
openly calling for the development of innovative new approach
methodologies to aid in the research effort for human diseases
like AD and to ease the burden of animal testing, whenever
possible. At the same time, computational AD-NAMs, based on
N-ADMMs, are already being used (Section 4) to study and to
simulate the evolution of important AD biomarkers within the
A/T/N framework and to make predictions from neuroimaging
data (Section 2).

A significant gap exists between current N-ADMMs and the
ability to use them as AD-NAMs to study how modifiable risk
factors, like dietary patterns, affect AD biomarker evolution. A
primary challenge in closing the gap between dietary patterns and
N-ADMMs is the need for highly interdisciplinary collaborations
between nutritional scientists, neuroscientists, computer scientists
and mathematicians. These collaborations will require a common
historical and contemporary foundation; to our knowledge, no
accessible interdisciplinary foundation exists in the literature. This
narrative review has provided that foundation in three parts: the
fundamentals and contextual significance of AD A/T/N biomarker
pathology (Section 2); a historical and contemporary account
that dietary patterns may influence AD risk and AD pathology
across three different scales of dietary patterns (Section 3); and an
introduction to the state-of-the-art in N-ADMMs, a foundation for
mechanistic, simulation-based AD-NAM:s (Section 4).

There are two objectives for moving forward in the
development of novel AD-NAMs, from our current foundation of
N-ADMMs, for the study of how diet may help to prevent AD.
First, research studies tracking, or developing, AD biomarkers
should incorporate assessments of dietary patterns (Section
5.1). Longitudinal neuroimaging data is already being used with
contemporary N-ADMMs to make predictions (192, 195, 196) but
data on dietary patterns are missing from the majority of these AD
studies. Tracking dietary data in longitudinal AD studies will allow
newly-developed simulation-based AD-NAM:s to incorporate, and
learn from, that data to make predictions or to study mechanisms.
Second, ADMMs should link evidence from the three dietary scales
to AD biomarker evolution and to incident AD risk (Section 5.2).
Though it remains an open question as to what, specifically, the
mechanisms that link dietary patterns to AD biomarkers may be,
we propose that extending the current N-ADMM:s to include the
effects of oxidative stress, neuroinflammation, and insulin resistance
will serve as effective starting points for this effort. Both of these
objectives are opportunities for novel research at the intersection of
diet and AD, charting a path forward for novel, simulation-based
AD-NAMs in AD prevention research.
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5.1 Improving dietary research in AD

Despite decades of hypotheses for AD pathogenesis and
progression, no clear mechanistic consensus has emerged. The
current view is that 14 modifiable factors account for up to
45% of the risk in developing AD; one third of these are
mediated by diet. Despite this strong potential, contemporary
evidence for the effects of dietary patterns on AD are only
partially conclusive (3). This may be due to known challenges
with dietary recall assessments, but may also arise due to obstacles
within the dietary patterns themselves. First, macroscale dietary
patterns can vary in constituents, making them challenging to
link to AD mechanisms; they often need high adherence, for
longer terms, to alter incident AD risk. Second, microscale
constituents must be carefully considered in AD studies; they
can exhibit dose-dependent responses, interactions with other
microscale constituents and mediation by ApoE €4 allele status.
The macroscale DII/E-DII dietary pattern sits between the
macro- and microscale; it offers a connection to a specific AD-
related mechanism while allowing for some variation in dietary
constituents. The obstacle of the DII/E-DII is that it was non-
trivial to construct and took considerable time and effort to
validate. We argue that addressing the following factors will help
improve dietary research in AD: uncoupling the clinical-pathologic
definition of AD; and including assessments of dietary intake in AD
biomarker studies.

AD has long been viewed as a combined clinical-pathologic
This
dual view ties biomarker pathology, primarily Ag and 7P, to

entity with post-mortem diagnostic confirmation (17).

a clinical presentation confounded by comorbidities, cognitive
reserve or other factors. Studies assessing interventions modifying
neuropathic changes are encumbered by this dual definition; was
AD affected if an intervention reduced neuropathology without
altering clinical symptoms, or vice versa? A new definition,
predicated on A/T/N biomarkers, disentangles AD from clinical
stage while presenting a second rating system, for those stages,
that compliments the biomarker-defined AD status [(25), Tables
4-7]. We propose that dietary studies of AD should adopt this
uncoupled framework, enabling a clear separation of biological AD
from clinical AD. Direct opportunities for further research include
designing new studies that consider AD and diet, from this view, in
addition to revisiting past cohort studies, where data are available
(CAIDE, WHICAP, CHAP, etc.), and consider them in terms of
these new criteria.

Dietary research in AD will be improved when AD biomarker
research begins including dietary assessments alongside the full
suite of, at least, the Core 1 A/T/N biomarkers [(25), Table
1] in addition to their other assessments. A number of large,
well-known longitudinal studies have collected AD biomarkers
and clinical measures. Examples include the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), the Mayo Clinic Study of
Aging (MCSA), the Swedish Biofinder Study (SBF), and the UK
Biobank (UKB) (203-206). The ADNI, SBE, and UKB are the
three largest contemporary AD biomarker studies in the world
with ADNT being the most accessible. However, the SBF is the
only one of the three with the requisite data to examine the
effects of a more comprehensive dietary intake within the A/T/N
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framework. We suggest that, even for smaller scale studies, AD
biomarker researchers adopt standardized, or enhanced, dietary
intake assessments into their study. Standard intake tools are
entirely non-invasive and include 24-h recall, food records, food
frequency questionnaires, and screening tools (207). To enhance
these tools, researchers may also consider screening blood and
urine samples for biomarkers of food intake (BFI); BFIs can help to
correct recollection errors encountered when using standard intake
tools (208). Finally, including dietary information in longitudinal
studies of AD biomarkers, especially for subjects recruited from
previous longitudinal dietary studies, will ease the burden on
developing novel mesoscale dietary patterns, like the DII/E-DII,
that target specific AD-related mechanisms, like inflammation,
oxidative stress, or insulin resistance. The a priori combination of
diet and AD biomarkers will enable a forward analysis of dietary
contribution and partially alleviate the otherwise pursuant necessity
of a lengthy validation period.

5.2 Toward simulation-based AD-NAMs for
dietary AD research

The role of diet in AD remains debated and traditional research
methodologies face practical challenges, at each dietary scale,
that go beyond their steep human, animal and economic costs.
Variations in an individual’s dietary patterns and the duration of
adherence to a dietary pattern presents difficulties at the dietary
macroscale. At the dietary mesoscale, a lack of dietary patterns
linking diet to AD-related mechanisms, other than inflammation,
is a barrier to progress. Interactions between different dietary
components, between dietary components and ApoE €4 allele
status and transport of dietary components across the blood brain
barrier all impose significant complexity at the microscale. Across
all dietary scales, disharmony in study design, study protocols,
measured variables, control variables, and a general lack of dietary
assessments in AD biomarker and clinical research suggest a
continued uphill battle toward strong evidence and a clearly,
prevailing consensus. To move forward, we must either gather
increasingly vast amounts of data, paying ever more human,
animal and economic cost, or we must, somehow, incorporate
new approaches. To this end, AD-NAMs, such as those based on
mathematical models and computer simulations, could prove to
be effective research tools to further explore these questions while
reducing the burden on human, animal and economic resources.

Models simplify complex research landscapes and MMs, like
their animal counterparts, have long been a tool to investigate the
potential role, or expressive ability, of central mechanistic factors.
The use of MMs and computing in, or related to, nutritional
sciences is not new (168-170, 209). MMs of prion-like kinetics,
as seen in AD, are also not new (198); neither is the notion
that diet affects AD (80). N-ADMMs that express the prion-like
hypothesis of AD are, however, recent and were first co-designed
by a collaborative team of neuroscientists, mathematicians and
engineers (189). N-ADMMs are mass balance models. Their
general similarity to energy balance models places the nutritional
sciences as a leading force in the development of the N-ADMMs
that will serve as simulation-based AD-NAMs in preventative AD
research. These types of AD-NAMs can help to improve predictive

Frontiersin Nutrition

10.3389/fnut.2025.1673533

accuracy, reduce research costs, reduce the general reliance on
animal models and potentially be integrated into clinical trials
that look toward diet as a means to lower AD prevalence. In
this direction, we foresee that mechanisms related both to diet
and to neuronal stress, the response of neurons to exogenous or
endogenous perturbations to cellular homeostasis, as promising
starting points for providing this link; at a high level, these include:
inflammation, oxidative stress and insulin resistance (90).

Inflammation, oxidative stress and insulin resistance are our
suggested starting points for bridging dietary patterns and N-
ADMMs. These three factors are at the intersection of human
dietary studies with significant effects on incident AD risk and
AD biomarkers (Section 3). At the macroscale (Section 3.1), the
MED diet is rich in polyphenols, carotenoids, whole grains, fiber,
and fish which reduce inflammation and oxidative stress (210,
211). Conversely, the WD shows increased inflammation and
oxidative stress (210) while highly processed, fatty, and highly
caloric foods, all hallmarks of the WD, are associated with brain
insulin resistance (212). At the mesoscale (Section 3.2, the DII
inflammatory score relates diet to inflammation, incident dementia
and AD. At the microscale (Section 3.3), pooled evidence suggested
that vitamins E, C, D, and folic acid may mediate AD risk; vitamins
E, C, and folate all possess well-known antioxidant properties
and vitamin D is a well-known anti-inflammatory. Vitamin
D may also increase brain insulin sensitivity (213). Similarly,
-3 fatty acids may be neuroprotective against, and mediate,
neuroinflammation and it seems that the brain’s access to DHA is
may be by ApoE €4 status (214-216). To study the implications
of inflammation, oxidative stress and insulin resistance on AD
biomarkers, N-ADMMs will need new expressions of the form
(Equations 4.5.A, 4.5.B). Guided by nutritional scientists and
neuroscientists, the correct populations, like Ag, TP, inflammatory
agents, reactive oxygen species, and antioxidants, will need to be
determined; their interactions and spreading patterns will need
to be modeled mathematically, studied, and validated against
known AD characteristics. This is a challenging and long-term
endeavor but the benefits may be significant. N-ADMMs provide
a novel way to generate new research questions, explore existing
hypotheses and to make predictions from patient data. N-ADMMs
enhanced with dietary pattern-related mechanisms may form
an effective foundation for novel, simulation-based AD-NAMs
explore hypotheses, improve predictive accuracy, reduce research
costs, reduce our reliance on animal testing and assist in the next
generation of clinical trials aimed at the possibility that dietary
patterns may be an effective intervention to help to reduce AD
prevalence.

5.3 Limitations of AD-NAMs built on
network mathematical models

Like any technology, network mathematical models have
their limitations and these limitations will percolate through to
any subsequent development, like AD-NAMs, built upon their
foundation. Probably the most significant limitation of using the
models of Section 4 to construct AD-NAM:s is that the endeavor will
require a significant upfront cost in fundamental interdisciplinary
research effort. In particular, extending current N-ADMMs to
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incorporate dietary-relevant mechanisms, like oxidative stress,
inflammation, and insulin resistance, will require guidance from
nutritional scientists and neuroscientists as mathematicians or
computer scientists work to determine mathematical formulations
that capture the biological mechanisms within the language of
network differential equations. This stands in sharp contrast to
using a black-box machine learning method, like a simple deep
neural network, to “just predict” outcomes from data. Black-box
approaches can have a significantly lower up-front development
cost but may have higher back end costs. They can requiring large
amounts of data to accurately train, the resulting model not being
interpretable, let alone amenable to mathematical analysis, and can
be difficult to use for hypothesis testing involving questions about
the potential effects of particular mechanisms or their interactions.

Working directly with extended N-ADMMs as a foundation
for simulation-based AD-NAMs is potentially limited by two
practical factors. First, brain graph networks are needed for these
models. Existing graphs are available online [(193), Introduction],
but should the need arise to construct patient-specific graphs,
this can be a time consuming process. There are open source
software tools available (217) to construct patient-specific brain
networks, but even these tools require pre-processing steps
for which a background in neuroimaging may be helpful.
Thus, it is suggested to use readily available network brains
graphs, at least in the preliminary stages of developing your
N-ADMM for your downstream simulation-based AD-NAM. A
second drawback is that solving the systems of Section 4, or
their extended counterparts, requires software development. In
particular, the authors are not aware of any “drag and drop” type of
commercial solvers for this application that would make the process
approachable to researchers without a computing background.
However, there are a wealth of programmable commercial products
and open source software libraries that can be used to solve large
systems of differential equations quickly.

There are two further limitations to the N-ADMM:s discussed
in Section 4. First, they are deterministic. Interdisciplinary teams
that wish to include random fluctuations alongside deterministic
behavior in their AD-NAMs can consider, instead, extending
the models of Section 4 to families of stochastic differential
equations. These extensions also imply that solving the resulting
N-ADMM, for simulation-based AD-NAMs will require more
specialized stochastic differential equation solvers, though such
solvers can be found in common commercial packages including
Matlab, Mathematica and several open source libraries like Diffrax,
Diffeqpy, PySDE, and DifferentialEquations.jl, among others.
Second, teams that want to use data-driven AD-NAMs should keep
in mind that N-ADMMs can quickly become complex. Recent work
has demonstrated that statistical machine learning can be used
with N-ADMMs to learn their parameters from neuroimaging data
(192, 195, 196), but these authors used relatively simple, inferable
N-ADMMs. Constructing separate N-ADMMs for inference and
prediction versus those for hypothesis testing may be the best
practice. This separation implies that simulation-based AD-NAMs
should be designed to answer a specific set of research questions
or to provide certain predictive capacities. Nevertheless, these
complexities also suggest that developing novel N-ADMMs to
enable simulation-based AD-NAMs is a interesting, rewarding
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and open field at the frontier of nutritionally based preventative
AD research.
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