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A B S T R A C T

Throughout the 19th and 20th centuries, aided by advances in medical imaging, discoveries in physiology and
medicine have added nearly 25 years to the average life expectancy. This resounding success brings with it
a need to understand a broad range of age-related health conditions, such as dementia. Today, mathematics,
neuroimaging and scientific computing are being combined with fresh insights, from animal models, to study
the brain and to better understand the etiology and progression of Alzheimer’s disease, the most common
cause of age-related dementia in humans. In this manuscript, we offer a brief primer to the reader interested
in engaging with the exciting field of mathematical modeling and scientific computing to advance the study
of the brain and, in particular, human AD research.

Statement of Significance
Modeling Alzheimer’s disease is a highly interdisciplinary field and finding an effective starting point can be

a considerable challenge. To address this challenge, this manuscript briefly highlights some central components
of AD related protein pathology, useful classes of mathematical models for brain and AD research and effective
computational resources for the practical prospective practitioner.
1. Introduction

‘How do we think?’ is one of the simplest, most profound and scientif-
ically remarkable questions asked by human brains about themselves.
Partial responses to this inquiry cut across a range of disciplines, from
physics, chemistry and computer science to psychology, neuroscience
and medicine. Despite its succinct presentation, the question of how
we think is complex and lacks a general and encompassing theory. One
difficulty may be in defining the qualifications of what constitutes the
act, or experience, of thought.

A simpler, but still quite challenging, related scientific question,
of increasing importance, is ‘Why does our ability to think decrease as
we age?’. Unlike the more amorphous variations of thinking about
thinking, aging is broadly associated with mechanisms such as cellular
senescence, DNA damage, genomic instability, the shortening rates of
telomeres, an increase in pro-inflammatory secretion and metabolic
stress [1,2], all of which have been suggested as participants in the
ultimate reduction of cognitive efficacy.

The need to understand age-related pathologies, especially those
related to the brain, is rising. The World Health Organization predicts
that, by 2050, the world population of those over 60 will double as
countries face a continuous acceleration in the median age of their cit-
izenry. Significant investments are therefore being made into research
surrounding diseases associated with aging, including cardiovascular
diseases, cancers and dementias.

∗ Corresponding author.
E-mail address: travis.thompson@ttu.edu (T.B. Thompson).

Dementia is an umbrella term which describes a decline in cognitive
capacity, memory and behavior. It is projected [3] that more than 50
million people currently live with dementia and that this number will
increase by more than 300% by 2050, levying a staggering economic
cost on both health care systems and caretakers worldwide. Dementia
is mechanistically non-specific and is currently thought to emerge
from one or more failures [4,5] in the brain’s ability to maintain the
appropriate cellular environment for proper neuronal function. Though
dementia is more specifically subdivided, such as vascular, frontotem-
poral and mixed dementia, the most prevalent cause of dementia,
accounting for approximately two-thirds of all dementia cases world
wide, is Alzheimer’s disease (AD).

The pathogenesis of AD, and the pursuant decline into a state of
dementia, is not yet fully understood. A number of lifestyle factors have
been identified [3] to help reduce the probability of developing AD,
but there is currently no cure for the disease. Pharmaceutical studies
are numerous [5,6] but have faced various complications and approved
endpoints have had less than desirable outcomes on overall disease pro-
gression [5,7]. Nevertheless, human AD research has remained resilient
by drawing on new perspectives and approaches.

A novel path forward in AD research is to make the mind math-
ematical by combining two areas of scientific progress: advances in
neuroimaging; and novel mathematical models of factors contributing
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Fig. 1. A protein population (blue) is converted to a population in an altered state (red)
by an autocatalytic process. The concentration of either population can be reduced by
brain clearance mechanisms (transparent blue, red). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

to AD and of AD progression. The latter category expresses the effects
of basic mechanisms, mostly discovered through experiments using
animal models, as sets of coupled differential equations while the for-
mer provides patient specific brain domains on which these equations
can be solved. Combined, neuroimaging and mathematical modeling
are helping to quantify patient data, make predictions about patient
outcomes and explore the potential effects of various mechanisms on
human AD progression.

2. A brief introduction to AD protein pathology

The discovery of AD is attributed [8] to Alois Alzheimer following
a lecture, delivered in the fall of 1906, in which he reported a pa-
tient’s development of ‘a peculiar severe disease process of the cerebral
cortex’. His account of the patient’s brain autopsy described what we
now know today as plaque deposits comprised of the protein amyloid
beta (A𝛽) and neurofibrillary tangles (NFT) made up of the protein tau
(𝜏P). Over 100 years later, the presence of A𝛽 plaques and 𝜏𝑃 NFT
are still considered to be primary pathophysiological markers of AD
with atrophy of the brain’s hippocampus [9] now recognized alongside
them.

To understand contemporary uses of mathematical models in AD re-
search, we briefly highlight a selected number of biological viewpoints
that have proven pivotal in this regard.

2.1. Perspectives on AD dementia pathogenesis

The precise etiology of AD dementia is currently unknown. As a
result, AD research is vibrant and a number [5] of origin theories, both
old and new, are present in the literature. For instance, the regional
disruption [10] of acetylcholine signaling (the cholinergic hypothesis)
was advanced half a century ago. Conversely, the theory of reduced
glymphatic system efficacy [11] (lymphatic system hypothesis) and the
view of chronic neuronal stress [4] (chronic stress hypothesis) are quite
recent.

The most familiar hypotheses for the cause of AD dementia are,
unsurprisingly, tied directly to the protein pathology noted by Alois
Alzheimer: A𝛽 plaques and 𝜏P NFT. The amyloid hypothesis [12] posits
that dysregulation of APP metabolism, and pursuant A𝛽 deposition and
aggregation, are the primary events that lead to a cascade of pathology
and culminates in AD. In a similar vein, the tau propagation hypoth-
esis [13] suggests that aggregates of abnormally phosphorylated tau
proteins (𝜏P) spread through the brain, interrupt signal transmission
between, and are toxic to, neurons and may further mediate A𝛽 toxicity
and neuronal death.
2

2.2. The prion-like hypothesis

Self replication of a pathological proteinaceous state is a hall-
mark [14] of prion diseases. Prion diseases were first solidified by Nobel
prize winning research, pioneered by Stanley Prusiner, in scrapie, a
transmissible spongiform encephalopathy in sheep. In scrapie, healthy
PrPC protein (blue, Fig. 1) is converted to misfolded, neurotoxic PrPSC

protein (red, Fig. 1) in an autocatalytic fashion.
Many brain disorders are associated with otherwise functional pro-

teins entering into a misfolded state and forming larger fibrillar and
aggregated [15,16] structures. AD is such a disease and characterized
by A𝛽 extracellular amyloid plaques and intracellular 𝜏𝑃 NFTs. Soluble
monomeric proteins undergo changes and form [17,18] small soluble
oligomers. When a critical concentration is reached, a larger, insoluble
conformation possess a more desirable free energy state [15] and
aggregation towards this energy minimizer is induced.

Misfolded aggregates act [16] in three important ways: first, they
continue to recruit lower order structures (elongation); second, they
can break apart (fragmentation); and finally, they can enhance the
formation of lower-order aggregates at higher rates (secondary nucle-
ation). In these ways, misfolded aggregates are capable of self repli-
cation. That protein misfolding and aggregation proceeds similarly to
prion diseases [19–22] is called the prion-like hypothesis of neurodegen-
erative diseases.

2.3. Regional spreading of misfolded proteins

Experimental data suggests that misfolded, seed competent oligo-
mers increase in number among brain regions which are connected via
axonal pathways [23–26]. Such spreading has been noted in vitro [24],
in animal models [27] and in humans [21,28]. Various experiments
have provided evidence consistent with both intracellular [24,26] ax-
onal and extracellular [29–31] spreading; extracellular misfolded pro-
tein species may be further impacted by the anisotropic diffusion of
brain water molecules as measured by diffusion tensor neuroimaging
techniques.

2.4. Brain clearance mechanisms

The brain is an active organ, accounting for nearly 20% of the
body’s daily metabolic energy production. A multitude of proteins are
continuously synthesized and degraded to support the brain and its
function. It comes as no surprise that a complex, biochemical mi-
lieu will give rise to the occasional neurotoxic misfolded protein or
oligomer.

The brain has clearance systems which act to preserve organ home-
ostasis. Our current understanding is that protein homeostasis is en-
sured, in general, by three main modes of clearance: cellular degra-
dation, the blood circulation (perfusion), and the cerebrospinal fluid
circulation [11,32,33]. The failure of one or more brain clearance
systems is thought to potentially contribute to the etiology of AD, the
progression of AD, or both.

3. The mathematical mind and AD research

Broadly speaking, there are two classical classes of mathematical
approaches for investigating factors relevant to AD at the whole brain
level. The first is coupled systems of partial differential equations (PDEs)
and the second is coupled systems of ordinary differential equations
(ODEs). Each of these have their advantages and drawbacks. A third
class of network dynamical systems (NDS) has recently come into use;
NDS bridge PDE and ODE models, and strike a balance between the
advantages of the two primary classical paradigms.
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Fig. 2. A finite element mesh of the first author’s brain; axial (left), coronal (middle) and sagittal (right) sections. The mesh was generated from MRI data using the Surface-Volume
Meshing Toolkit (SVM-Tk).
3.1. Brain modeling using PDEs

Systems of coupled PDE can express multiphysics quantities of
interest in both space and time. The derivation of closed-form solutions
to most PDEs is not a feasible approach and discretization methods
are used to transform them into corresponding, often large, linear
systems that can be solved using computers. The advantage of this
approach is two-fold: first, these types of methods can often provide
impressive resolution in space and time; second, there are discretization
methods, such as the finite element or finite volume methods, that
handle complex geometries, such as the brain, quite well.

Models based on PDEs face several challenges. These challenges,
broadly speaking, are: the mathematical analyses of PDE models, and
their discretizations, are often complicated; the discretized problems,
on complex geometries, tend to be computationally expensive to solve;
and ascertaining the computational assets, such as brain meshes and
white matter diffusion tensors, from patient clinical data can be a
difficult task.

3.1.1. The brain as a multi-fluid porous medium
Under normal in vivo conditions, the brain can be modeled as a

porous, quasi-static and linearly elastic fluid saturated medium consist-
ing of a solid skeleton of extracellular matrix permeated by one or more
fluid networks. The equations describing this paradigm are the MPET,
or multiple network poroelasticity equations. A simplified form [34] of
the MPET equations are

−∇ ⋅ 𝜎(𝐮) +
𝐽
∑

𝑗=1
𝛼𝑗∇𝑝𝑗 = 𝐟 , (1a)

𝑐𝑗 �̇�𝑗 + ∇ ⋅
(

𝛼𝑗 �̇� − 𝜅𝑗∇𝑝𝑗
)

+
𝐽
∑

𝑚=1
𝛾𝑚,𝑗

(

𝑝𝑗 − 𝑝𝑚
)

= 𝑔𝑗 . (1b)

The model (1a)–(1b) is a system of 𝐽 + 1 equations, where 𝐽 is the
total number of fluid networks permeating the poroelastic medium, and
is closed by a choice of suitable displacement and pressure boundary
conditions.

Momentum balance is expressed by (1a), wherein 𝐮 is the displace-
ment of the solid skeleton, 𝜎(𝐮) = 2𝜇𝜖(𝐮) + 𝜆tr(𝜖(𝐮)) is the isotropic
effective elastic stress tensor, 𝜖(𝐮) = 1

2

(

∇𝐮 + ∇𝐮𝑇
)

is the strain ten-
sor and 𝜇 and 𝜆 are the Lamé coefficients of the (brain) poroelastic
medium. The Lamé coefficients are related [35] to the Young modulus
(𝐸) and Poisson ratio (𝜈) of the (brain) medium by

𝜇 = 𝐸
1 + 2𝜈

, 𝜆 = 𝐸𝜈
(1 − 2𝜈) (1 + 𝜈)

. (2)

The remaining terms in (1a) are the fluid pressures, 𝑝𝑗 for 𝑗 = 1, 2,… , 𝐽 ,
in fluid network 𝑗 and the Biot–Willis coefficients 𝛼𝑗 , associated to the
𝑗th network.

There is one mass conservation equation, of the form (1b), for each
of the 𝐽 fluid networks. In (1b), 𝑐𝑗 is the storage coefficient and 𝜅𝑗 is
the hydraulic conductivity for the 𝑗th network while 𝛾𝑚,𝑗 is a transfer
coefficient determining exchange of pressure between the 𝑚th and 𝑗th
3

networks. Additional details regarding the coefficients of (1a)–(1b) can
be found in [36]. An extension of (1a)–(1b) includes cross-porosity
storage coefficients that manifest [36] under constrained conditions,
resulting in additional time derivative terms [37, Eqn. 13] appearing
in (1b).

The model (1a)–(1b) has been used, with 𝐽 = 4 or 𝐽 = 6 fluid
networks and biological boundary conditions, in the biomechanics liter-
ature to study several factors related to the brain and to AD. It has been
used to study hydrocephalus and cerebral edema [38,39] and factors
related to AD onset and progression [40–44], such as perfusion and
cerebrospinal fluid clearance (Section 2.4), for healthy and cognitively
impaired patients.

3.1.2. Numerical methods and neuroimaging meshes
Solving (1a)–(1b) numerically is a challenging task, even in the

canonical case of Biot’s equations which result from the MPET system
(1a)–(1b) when 𝐽 = 1. This is especially true in the brain where
large disparities in the material coefficients, 1 ≪ 𝜆, 0 < 𝜅𝑗 ≪ 1 and
0 ≤ 𝑐𝑗 ≪ 1, can cause numerical instabilities. Numerical concerns
aside, the question of how to generate accurate approximations to brain
geometries, that a computer can use alongside a numerical method
to solve systems like (1a)–(1b), is a practical issue that must also
be resolved. There are responses to both of these problems in the
literature.

There are several finite element methods for solving (1a)–(1b) that
can be implemented using most finite element software solver pack-
ages; we highlight only a few recent approaches here. For instance, a
mixed finite element method [34] based on introducing a solid pres-
sure into (1a)–(1b) can be used for the case of nearly incompressible
materials, 1 ≪ 𝜆 or equivalently 𝜈 ≈ 1∕2 in (2), with small storage,
0 ≤ 𝑐𝑗 ≪ 1, and transfer, 0 ≤ 𝛾𝑚,𝑗 ≪ 1, coefficients. A parameter-
robust preconditioner [45] for the solid pressure approach has also
been proposed.

In brain modeling, one may also wish to include a Darcy flux in
(1a)–(1b), for example, to simulate a drug delivered to the brain or to
enhance information regarding perfusion or glymphatic system [11,46]
function. It has been shown, at least for 𝐽 = 1, that (1a)–(1b) can
be augmented with a Darcy flux and robustly solved [47] when 0 <
𝜅𝑗 ≪ 1, in (1b), without the need for a more restrictive Stokes-
Biot [48] numerical stability condition. If (1a)–(1b) is solved as written,
and using conforming finite elements as in bioengineering [40–44]
research, a-posteriori error estimators and adaptive refinement schemes
are now appearing in the literature [49] as well.

There are many more finite element based methods for solving
(1a)–(1b), but ascertaining brain meshes from patient data is also
a significant barrier for patient-specific modeling in AD research. It
is now possible, by combining the open source brain segmentation
of FreeSurfer [50,51] and the Python-based Surface Volume Meshing
Toolkit [52] (SVM-Tk), to generate brain meshes from neuroimaging
data using only a few dozen lines of code. The SVM-Tk supports
meshing, re-meshing, smoothing, anatomical regional labeling and dif-
fusion tensor extraction from patient neuroimaging (T1, T2 and DTI)
data [52,53].
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A comprehensive guide for generating a brain mesh, from MRI
patient data, and for getting started with PDE based brain modeling,
using FEniCS [54], is available [53]. An example of a full-brain, tetra-
hedral finite element mesh, generated by the SVM-Tk using a T1 MRI
sequence, appears in Fig. 2 with cells tagged for the gray matter (dark
gray), white matter (light gray) and the lateral and third ventricles
(blue).

3.2. Brain modeling using ODEs

Systems of ODEs are especially useful for the modeling of biolog-
ical phenomena as, often, only a general description of relationships
between biological quantities, and not precise conservation laws, may
be available. This phenomenon occurs frequently in the context of AD
research; laboratory experiments may, for example, exhibit that the
production of hyperphosphorylated 𝜏𝑃 is upregulated [55,56] in the
presence of 𝐴𝛽 but we otherwise lack a precise notion of the physics of
this process across the extracellular space. In this case, an ODE model
is arguably the most parsimonious approach given the data at hand.

Brain AD models based on ODEs are more readily formulated, pred-
icated on experimental results, are significantly less computationally
expensive to solve, compared to their PDE counterparts, and much
can be learned from studying the structure of their equilibria as (bi-
ologically meaningful) variations are made to the system’s parameters.
However, they face a significant drawback: conventional ODE models
provide information about the overall state of a system and lack spatial
fidelity. Though this perspective can be useful when modeling whole-
brain [57] protein aggregate levels, spatio-temporal heterogeneity, of
𝐴𝛽 and 𝜏𝑃 , is a well-known characteristic [28,58] of AD progression.

3.2.1. The brain and network dynamical systems
Network dynamical systems are a particular type of compartmental

ODE model that can be used to offset the traditional lack of spatial
fidelity in ODE systems that otherwise describe evolution in time. NDS
are especially useful for modeling many brain diseases, including 𝐴𝛽
and 𝜏𝑃 pathology in AD (Section 3.2.2).

At the simplest level, a NDS begins with a fixed choice of an
undirected graph, with no self loops, 𝐺 = (𝑉 ,𝐸) having vertex set
𝑉 =

{

𝑣1, 𝑣2,… , 𝑣𝑁
}

and edge set 𝐸 ⊆ 𝑉 × 𝑉 . In this case, a symmetric,
weighted adjacency matrix A can be defined by 𝐀𝑖𝑗 = 𝑤𝑖𝑗 where 𝑤𝑖𝑗 =
𝑤𝑗𝑖 > 0 if (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 and 𝑤𝑖𝑖 = 0. A general, autonomous NDS [59] on
𝐺 takes the form

�̇�𝑖 = 𝑓𝑖(𝐱𝑖;θ𝑖) +
𝑁
∑

𝑗=1
𝐀𝑖𝑗𝑔𝑖𝑗

(

𝐱𝑖, 𝐱𝑗 ;θ𝑖,θ𝑗
)

, (3)

where 𝐱𝑖 is a vector representing quantities associated to the vertex 𝑣𝑖 ∈
𝑉 , 𝑓𝑖(𝐱𝑖; 𝜃𝑖) represents the local dynamics, with parameter vector θ𝑖, at
vertex 𝑣𝑖, while 𝑔𝑖𝑗

(

𝐱𝑖, 𝐱𝑗 ;θ𝑖,θ𝑗
)

describes the interactions between the
quantities defined at vertices 𝑣𝑖 and 𝑣𝑗 .

The choice of network, 𝐺, plays an important role in an NDS model
due to its mediation of the dynamics, as in (3), between vertices. Exper-
imental, and histopathological, propagation of 𝐴𝛽 and 𝜏𝑃 pathology is
biased (Section 2.3) by the axonal connectivity [24,26,29–31] between
gray matter regions of the brain; even extracellular molecules are
subject to the anisotropic diffusion of water along axonal fiber bundles.
For this reason, a structural connectome graph is a good candidate for
NDS models of protein pathology in AD.

Structural connectome graphs can be constructed from two ingredi-
ents: a patient’s diffusion tensor image (DTI) scan, a type of MRI scan
that measures the diffusion of water molecules in the brain, and a brain
parcellation that labels different gray matter, and subcortical, brain
regions. Many connectome graphs are already available [60–62] for
download, based on data from the Human Connectome Project, for sev-
eral different parcellations. Additional connectomes can be constructed
using freely available software such as FSL [63,64] and Mrtrix3 [65,
66].
4

Fig. 3. A structural brain connectome composite graph created from 426 patient DTI
scans [60–62].

An example of a structural connectome graph, with 1015 vertices
and approximately 77,000 edges, appears in Fig. 3. The vertices of the
graph correspond to anatomically labeled gray matter and subcortical
regions while the edges express the (white matter) axonal fiber con-
nectivity between those regions; edge weights are determined by the
patient-averaged strength of the regional connectivity as determined
by diffusion tensor analysis.

3.2.2. AD proteopathy models based on NDS
Modeling the progression of AD to dementia is a complex task.

A number of overlapping theories (Section 2.1) exist that attempt
to define a set of AD-related pathologies that might be causative
in producing the downstream attributes concomitant with a clinical
diagnosis of dementia; there is not yet a clear consensus in this regard.
Toward this end, there has been an ongoing, and international, effort
to determine biomarkers [67,68] of AD and their relation to dementia
progression.

The National Institute on Aging and Alzheimer’s Association (NIA-
AA) has released a framework [67] that classifies the AD spectrum
in terms of measurable biomarkers; among these are 𝐴𝛽 and 𝜏𝑃 load
as determined by positron emission tomography (PET) patient image
scans. PET scans are coupled with MRI to provide regional information
on 𝐴𝛽 and 𝜏𝑃 load in a patient’s brain.

Modeling 𝐴𝛽 and 𝜏𝑃 progression can be done by coupling disease
mechanisms, such as regional spreading (Section 2.3), clearance (Sec-
tion 2.4) and the prion-like hypothesis (Section 2.2), together into an
overall model that functions on time scales relevant to observable AD
protein pathology dynamics, as detected by 𝐴𝛽 and 𝜏𝑃 PET scans. A
reasonable starting point for a model [69], in this vein, is a diffusion–
reaction system, for a single protein species of interest, that takes the
form

�̇� = ∇ ⋅ (𝜅∇𝑝) + 𝑅(𝑝), (4)

where 𝜅 = 𝑑⟂𝐈 + (𝑑 − 𝑑⟂)𝛾 ⊗ 𝛾 is the anisotropic diffusion tensor
along the brain’s axonal (white matter) bundles. In (4), 𝑝 denotes the
concentration of a (single) protein species, 𝛾 = 𝛾(𝐱, 𝑡) is a unit vector
oriented along a fiber bundle, at position 𝐱 ∈ R3, 𝐈 is the 3 × 3 identity
matrix, 𝑑⟂ is the radial tissue diffusion constant and 𝑑 ≫ 𝑑⟂ is the
diffusion constant along the fiber. The term 𝑅(𝑝) is the reaction term,
which encapsulates the reproduction.

The system (4) can be approximated by a NDS, in the form of (3), by
beginning with a structural connectome graph 𝐺 = (𝑉 ,𝐸) such as the
one shown in Fig. 3. Letting 𝐩 be a vector with 𝑁 = |𝑉 | components,
we introduce the graph Laplacian matrix to approximate the continuous
diffusion operator, along axonal fiber bundles, in (4) as 𝐋 = 𝐃−𝐀 where
𝐀 is an 𝑁 ×𝑁 weighted adjacency matrix, associated to the structural
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connectome graph (Section 3.2.1), and 𝐃 is the diagonal matrix 𝐷𝑖𝑖 =
∑𝑁

𝑗=1 𝐴𝑖𝑗 . With this ansatz, (4) can be written in component form

�̇�𝑖 = −𝜅
𝑁
∑

𝑗=1
𝐋𝑖𝑗𝐩𝑗 + 𝑅(𝐩𝑖), (5)

where 𝜅 is now a characteristic diffusion constant. The model (5) is a
special case of (3) where 𝑔𝑖𝑗 (𝐩𝑖,𝐩𝑗 ;θ𝑖,θ𝑗 ) = 𝜅𝐩𝑗 , 𝑓𝑖(𝐩𝑖; 𝜃𝑖) = 𝑅(𝐩𝑖; 𝜃𝑖) −
𝜅𝐷𝑖𝑖𝐩𝑖 and θ𝑖 are any coefficients that may appear in the local reaction
term. For simplicity, we drop the explicit emphasis on the functions 𝑓𝑖
and 𝑔𝑖𝑗 in the discussion that follows as the context is similar.

The earliest use of NDS in AD research are network diffusion mod-
els [70,71] wherein the reaction term vanishes, i.e. 𝑅(𝐩𝑖) = 0. These
studies showed interesting correlations between the eigenmodes of the
graph Laplacian, atrophy and hypometabolism in addition to short-
time rate of change from a baseline measurement. However, lacking
a reaction term, diffusion-only models cannot recapitulate the growth
effect observed in longitudinal studies [57,72,73].

A simple model that incorporates both axonal spreading (Sec-
tion 2.3) and prion-like autocatalytic growth (Section 2.2), which can
saturate [57,72], uses a logistic reaction term of the form 𝑅(𝐩𝑖) =
𝛼𝐩𝑖

(

1 − 𝐩𝑖
)

in (5), where 𝛼 ∈ R is a growth rate parameter, and is
called the Fisher–Kolmogorov–Petrovsky–Piskunov (FKPP) NDS model
for a single prion-like protein species. Despite the stark simplicity of
the FKPP NDS model of proteopathy, the model can reproduce [74]
observed staging [28,58] patterns of typical 𝜏𝑃 pathology. Due to the
model’s small number of parameters, it can be used to predict when
𝐴𝛽 or 𝜏𝑃 will reach particular brain regions [75] and to infer patient-
specific predictions of both 𝜏𝑃 progression [76–78] and 𝜏𝑃 -associated
atrophy [73] from patient PET and MRI scans.

The single species (5) NDS model, for either misfolded 𝐴𝛽 or 𝜏𝑃 ,
an be extended in several ways to study other aspects of AD that
an be found in the literature. For instance, the model (5) can be
xtended [79, Eqn. 2.4] to a two-species model to study soluble 𝐴𝛽42, or
𝐴𝛽40, monomers and its aggregated (dimers, trimers, fibrils, etc.) forms
or soluble misfolded 𝜏𝑃 monomers and its downstream aggregates.

Extensions of (5) have also been used to study important AD hy-
potheses noted in animal models, particularly around the primacy of
clearance (Section 2.4) mechanisms [11,32,33] and 𝐴𝛽-𝜏𝑃 interac-
tions [55,80,81] in the etiology and progression of AD. For instance,
an NDS 𝐴𝛽-𝜏𝑃 interaction model [82, Eqn. 3] suggests that regional
brain clearance may determine whether the presence of sufficient 𝐴𝛽
is necessary for 𝜏𝑃 pathology to develop. Moreover, 𝐴𝛽 pathology

ay be rebuffed until brain clearance reaches a critically low, isoform-
ependent, level [16] and overall brain clearance can significantly
low [83, Sec. 5.1] the progression of AD while regional brain clearance
ifferences may influence [83, Sec. 5.3] a patient’s specific AD subtype,
s determined by postmortem histopathology.

. Concluding remarks

The puzzle of AD is a first step on the longer path of understanding
he vast breadth of the function of our own minds. There are many,
eemingly rudimentary, questions that we still cannot answer. Why
s it that the misfolding and aggregation of particular proteins are so
ssociated with cognitive decline? Why do life choices, like exercise,
leep, diet and education play a role in whether or not we develop AD
ater in life? Why is it that some proteins may go awry in one brain but
ot another? Why do particular proteins seem to spread preferentially
o certain areas of the brain and have different affects? Is protein
ggregation the cause or consequence of the path to AD dementia?
an we do anything to detect, stifle, or to halt AD and other terrible
eurodegenerative diseases?

Mathematics addresses a critical gap in AD research. Many con-
emporary discoveries are being made that pertain to AD and most of
hese discoveries arise from experiments conducted in vitro or using
nimal models. Mathematics and scientific computing provide a means
5

to test the implications of experiments in a virtual human environment.
This manuscript has shown that both PDE and NDS-based ODE models,
along with the computational resources supporting their solution, can
make predictions and test hypotheses, based on experimental findings
and imaging data, that are relevant to human AD pathogenesis and
progression.

Today, we have more questions than we have answers about the
brain, human cognition, aging and AD. In the future, with a cure in
hand, we will look back our on research progress. Quite possibly, we
will point to mathematical models of the mind as a pivotal step forward
in AD research.
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